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1. INTRODUCTION 

1.1. Fatigue of Concrete i n  Pavement 

When a material  f a i l s  under a number of repeated loads, each 

smaller than the ultimate s t a t i c  strength,  a fa t igue f a i l u r e  i s  said 

t o  have taken place. Many s tudies  have been made t o  character ize  

the fa t igue behavior of various engineering materials.  The r e s u l t s  

of some of these studies have proved invaluable i n  the evaluation and 

prediction of the fa t igue strength of s t ruc tu ra l  materials. Consider- 

able time and e f fo r t  has gone in to  the evaluation of the fa t igue behavior 

of metals. These ear ly  s tudies  were motivated by prac t ica l  considera- 

t ions:  The f i r s t  fa t igue t e s t s  were performed on materials t ha t  had 

been observed t o  f a i l  a f t e r  repeated loading of a magnitude l e s s  than 

tha t  required for  f a i l u re  under the application of a s ingle  load. 

Mine-hoist chains,  railway axles,  and steam engine par ts  were among 

the f i r s t  s t ruc tu ra l  components t o  be recognized as exhibit ing fa t igue 

behavior. 

Since concrete i s  usually subjected t o  s t a t i c  loading ra ther  than 

cycl ic  loading, need fo r  knowledge of the  fa t igue behavior of concrete 

has lagged behind tha t  of metals. One notable exception t o  t h i s ,  

however, i s  i n  the area of highway and a i r f i e l d  pavement design. 

Due t o  the f a c t  tha t  the fa t igue behavior of concrete must be understood 

i n  the design of pavements and reinforced concrete bridges, highway 

engineers have provided the motivation fo r  concrete fa t igue s tudies  

since the 1920's. 



Results from fat igue s tudies  are usually presented i n  the  form 

of an S-N curve ( s t r e s s  versus log of the number of cycles t o  fa i lu re ) .  

I f  there is a break i n  the curve and the curve becomes asymptotic t o  

a l ine  pa ra l l e l  t o  the horizontal  axis, the s t r e s s  a t  which t h i s  occurs 

i s  cal led the endurance or  fa t igue l i m i t .  Most metals have an endurance 

l i m i t ;  however, t e s t s  on concrete up t o  10 mill ion cycles of load 

6 
application have f a i l ed  t o  es tab l i sh  an endurance l i m i t .  It is 

therefore important t o  quote fa t igue strength for  a specified number 

of cycles when discussing the fatigue properties of concrete. Fatigue 

strength i s  defined as the s t r e s s  causing f a i l u r e  a f t e r  a s ta ted  number 

of cycles of loading. Fatigue l i f e  i s  the  number of cycles of s t r e s s  

t ha t  a specimen can withstand without f a i l u re .  

The fa t igue of concrete i s  associated with the formation and 

propagation of microcracks a t  the aggregate-cement matrix interface 

and i n  the  cement matrix i t s e l f .  6'10'17'43'53 The mechanism of fatigue 

fracture  of concrete i s  essen t ia l ly  iden t ica l  t o  the mechanism of f rac ture  

under s t a t i c  and sustained loading. lo Fatigue f rac ture  involves 

microcracking similar to ,  but more extensive than, the microcracking 

tha t  accompanies s t a t i c  f a i l u re .  For instance, Iiennett6 found tha t  

the t o t a l  length of surface cracks v i s i b l e  on a concrete specimen 

subjected t o  100,000 cycles of a s t r e s s  equal t o  75% of the s t a t i c  

strength was typical ly  35% greater  than the length measured a f t e r  a 

s ingle  loading t o  95% of the s t a t i c  strength.  

Most research i n t o  the fa t igue strength of concrete involves the 

repeated application of a constant s t r e s s  u n t i l  f a i l u r e  (constant 

s t r e s s  fa t igue) .  I f  r e s t  periods are  allowed during the t e s t ,  the 



fa t igue strength increases. Hilsdorf and ~ e s l e r ' ~  found tha t  r e s t  

periods of up t o  5 min. a f t e r  every 10 min. of t e s t i ng  increased the 

fa t igue l i f e  from 62 t o  68%. One possible explanation of t h i s  is 

concrete 's  inherent a b i l i t y  to  heal cracks i n  the cement paste. 24 

Fatigue l i f e  i s  a function of the range of s t r e s s  t o  which the concrete 

is  subjected. 
18,33 

If a t e s t  specimen is  subjected t o  varying s t r e s s  

levels ,  the fa t igue l i f e  w i l l  a lso  be a l tered.  It is important t o  

understand the e f f ec t  of varying s t r e s s  levels  because t h i s  condition 

i s  more representative of the actual  condition t o  which a s t ruc tu ra l  

component w i l l  be subjected. The fa t igue l i f e  of a specimen is larger 

i f  cycl ic  loading a t  a high s t r e s s  level is followed by cyc l ic  loading 

a t  low s t r e s s  level. I f  the lower s t r e s s  leve l  i s  applied f i r s t ,  a 

decrease i n  fa t igue l i f e  i s  observed. A r e l a t i ve ly  low number of cycles 

of high loads can increase the fa t igue l i f e  of concrete under a lower 

load beyond the l i f e  of a specimen which has not been previously loaded. 
18 

This increase in  fa t igue l i f e  can be a t t r ibu ted  t o  the f a c t  t ha t  concrete 

exhibi ts  two opposing e f f ec t s  when loaded: consolidation and consequent 

strengthening and microcracking and consequent weakening. The control l ing 

e f f ec t  w i l l  depend on the r e l a t i v e  magnitude and method of application 

of the loads. Many other factors  a f fec t  the  fa t igue strength of concrete; 

among these a r e  aggregate type and quali ty,  moisture condition,  r a t e  

of loading, age of concrete a t  t es t ing ,  type of loading, concrete 

strength,  curing conditions, specimen s i ze ,  and a i r  entrainment. 22,36,38 

Highway concrete s labs  are  subjected t o  many repe t i t ions  of t r a f f i c  

loads during the i r  service  l ives;  thus, the importance of fa t igue  i n  

concrete pavement is self-evident.  Since the f lexura l  s t r e s se s  i n  



concrete pavement slabs a r e  c r i t i c a l ,  fat igue due t o  f lexura l  s t r e s s  

i s  used for  concrete pavement design. Fatigue t e s t s  i n  compression, 

although useful for  many design applications,  do not provide information 

useful t o  the designer of pavements. Loading schemes which subject  

concrete specimens t o  f lexura l  loading more r e a l i s t i c a l l y  duplicate 

conditions encountered i n  the f i e ld .  

The f i r s t  fa t igue t e s t s  using flexure specimens were car r ied  

out by ~ e k e t  i n  1906. 36 These t e s t s ,  although similar t o  l a t e r  inves- 

t igat ions ,  are  only of h i s t o r i c a l  value due t o  more recent and complete 

research. Two extensive investigations on f lexura l  fa t igue of concrete 

were car r ied  out by Purdue University (1922-24) and the I l l i n o i s  

Department of Highways (1921-23). The I l l i n o i s  t e s t s  reported by 

C l e m e r  and the Purdue t e s t s  served as  a basis for  t he  development 

of the Portland Cement Association (PCA) design curve for  fa t igue 

strength of concrete pavement i n  1933. 45 

Clemer devised a unique t e s t i ng  machine i n  which 6 in .  x 6 in. x 

36 in.  concrete beams were canti levered out from a c e n t r a l  hub. Load 

was applied by ro ta t ing  a pa i r  of rubber-tired wheels about the cen t r a l  

hub. Blocks were placed between the canti levered beams t o  form a 

smooth c i r cu l a r  track.  Load applied by the wheels could be varied by 

placing dead weight i n  two weight boxes located on the axle between the 

two wheels. Test beams were subjected t o  40 load applications per 

minute. Clemer found tha t  the endurance l i m i t  fo r  concrete was between 

51 and 54% of the modulus of rupture, as  determined from a s t a t i c  t e s t ,  

fo r  up t o  2 mil l ion cycles of load application. As was previously 



s ta ted ,  more recent investigations have not shown the existence of a 

fa t igue  l i m i t  i n  concrete, a t  l eas t  up t o  10 mill ion cycles of load 

application.  

tIat t l6 a t  Purdue University car r ied  out f lexura l  t e s t s  s ign i f ican t ly  

d i f fe ren t  from Clemmer's but came t o  similar conclusions. Specimens, 

4 i n .  x 4 in.  x 30 in . ,  were tes ted a s  cant i lever  beams. Each specimen 

was subjected t o  s t r e s s  reversal  a t  a r a t e  of 10 cycles/min. by a test 

machine which applied load by weights a l te rna te ly  lowered on the opposite 

ends of a cross  member fastened t o  the  end of the beam. Hatt f e l t  

tha t  40 applications of load per minute used by Clemmer was too f a s t  

t o  compare with actual  road conditions. Testing was a l so  shut down 

overnight t o  allow f o r  r e s t  periods t o  be t t e r  duplicate f i e l d  conditions. 

Of special  significance is the f a c t  tha t  the  fa t igue response of 

concrete i n  the  laboratory was a l so  re f lec ted  i n  actual  pavement per- 

formance and i n  r e su l t s  of f i e l d  road t e s t s  i n  terms of decrease of 

se rv iceabi l i ty  index and development of cracks with increasing nmber 

of load applications. 
9,20,39,40,48,52 

The most widely used fa t igue curves for  pla in  concrete pavement 

design are  those of the Portland Cement Association. 13a45 The derivation 

and h is tory  of these curves w i l l  be elaborated l a t e r  i n  the  tex t .  The 

current PCA curve, adopted i n  1966, can be expressed as follows: 

SR = 0.972 - 0.0828 log N 

where 

SR = s t r e s s  r a t i o  

= r a t i o  of f lexura l  s t r e s s  t o  modulus of rupture 



N = number of allowable load repet i t ions .  

Vir tual ly  a l l  modern r i g i d  pavement design methods recognize 

the importance of the fa t igue l i f e  of concrete and, i n  design, consider 

not only the anticipated weights but a lso the number of heavy axle 

loads which w i l l  be applied during the pavement design l i f e .  These 

methods, fo r  example, the AASHTO Interim Design procedure1 used by 

most highway departments i n  t h i s  country, and the Road Note 29 design 

procedure2 used i n  the United Kingdom are  a lso based on road t e s t  data. 

The major input of both methods is  the t o t a l  number of equivalent 

18-kip s ingle  axle loads applied during the design l i f e .  The PCA 

design procedure evaluates the accumulated fa t igue e f fec t s  of a l l  

heavy axle load applications during the pavement l i f e  t o  prevent s lab  

cracking. 

I n  sumarizing the preceding discussions on concrete fa t igue and 

r ig id  pavement design, the following can be concluded: 

a Concrete, used i n  pavement s labs ,  i s  subjected t o  fa t igue 
f a i l u re .  

r Concrete pavement performance and d i s t r e s s  i s  a function of 
load repe t i t ions ;  therefore,  load repe t i t ions  have a d i r ec t  
influence on the thickness requirements of a concrete pavement. 

*Vi r tua l ly  a l l  modern r ig id  pavement design methods take 
in to  consideration the fa t igue strength ( fa t igue l i f e  and 
load repe t i t ions)  of concrete. 

1.2. Air-entrained Concrete i n  Pavement 

The use of admixtures which cause the entrainment of a i r  i n  

concrete is considered by many t o  be one of the most important developments 



in  concrete technology i n  the l a s t  few decades. The pr incipal  application 

has been t o  pavement concrete. Entrained a i r  benef i ts  concrete mainly 

i n  two ways: (1) improved res is tance of the concrete t o  freezing and 

thawing and (2) improvement of the workability and decrease i n  segrega- 

t ion of f reshly mixed concrete. A i r  bubbles present i n  the cement paste 

28 
of unhardened concrete can come from several  sources : (1) a i r  

o r ig ina l ly  present i n  intergranular spaces i n  the cement and aggregate, 

(2) a i r  o r ig ina l ly  present within the pa r t i c l e s  of cement and aggregate 

but expelled from the pa r t i c l e s  before hardening of the concrete by 

inward movement of water under hydraulic and cap i l la ry  potent ia l ,  

(3) a i r  o r ig ina l ly  dissolved i n  the mixing water, and (4) a i r  which 

is  in-folded and mechanically enveloped within the concrete during 

mixing and placing. These are  the only sources of a i r  bubbles i n  

concrete, whether or  not an air-entraining agent is used. 28 An a i r -  

entraining agent makes use of the fourth method of supplying a i r  

bubbles t o  a p l a s t i c  concrete mix. Air-entraining agents reduce the 

surface tension a t  air-water interfaces  within the cement paste which 

reduces the r a t e  of dissolut ion of a i r  i n  the bubbles and the tendency 

of bubbles t o  join together, forming larger bubbles. This produces a 

uniform d is t r ibu t ion  of very small a i r  bubbles within the cement paste 

matrix. It  is  t h i s  d i s t r ibu t ion  of bubbles tha t  accounts for  the 

increased freeze-thaw durab i l i ty  as  well as  the  decreased compressive 

and t ens i l e  strengths of air-entrained concrete. These and other 

e f f ec t s  of the a i r  void system i n  concrete have been well docu- 

mented. 28,29,30,31 



Today air-entrained concrete i s  recommended for  a l l  s t ructures  

under conditions of severe exposure and for  a l l  pavements regardless 

19,25,45,51 
of climatic conditions. Depending on the maximum s i z e  of 

aggregate, the usual recommended entrained a i r  content var ies  from 

46 
5% for a 2-in. aggregate t o  8% for  a 112-in. aggregate. For pavement 

concrete the specified a i r  content i n  Iowa is 6 _+ 1% 
44 

In recent years, because of the great ly  increased use of de-icing 

chemicals, i t  has been found necesary t o  incorporate higher levels  of 

a i r  i n  concrete to  assure freedom from deter iorat ion due t o  f r o s t  action 

( i n  ce r t a in  instances, a i r  content of 8 or  9% has been recommended for  

use i n  s t ructures  such as  highway bridge decks). Furthemore, there 

is reason to  suspect tha t ,  because of the concern on the par t  of the 

contractor tha t  he achieve the desired workability and meet minimum 

a i r  content requirements, the  actual  a i r  content i n  f i e l d  placed concrete 

could, i n  some cases,  be higher than recommended. 

1.3. Fatigue Behavior of Air-entrained Concrete 

The e f f ec t s  of a i r  content on most concrete properties such as  

compressive strength,  workability, durab i l i ty ,  and creep are  qui te  well 

understood. For example, it is known tha t ,  fo r  normal levels  of a i r  

content, i f  there  i s  no change i n  water-cement r a t i o  the strength w i l l  

be reduced by 3 t o  5% for  each percent a i r  added. However, knowledge 

of the e f f ec t  of a i r  content on the f lexural  fa t igue strength of plain 

concrete i s  nearly nonexistent. I n  view of recent nationwide in t e r e s t  i n  

economical pavement design, data  must be col lected on the e f f ec t s  of a l l  



additives and variables on the fa t igue strength of concrete. 

A l i t e r a t u r e  search of the past  70 years produced only two reported 

s tudies  on the fa t igue strength of air-entrained concrete. One of the  

s tudies  was car r ied  out i n  1943 by Purdue University for  the Kentucky 

Department of Highways.14 It involved f lexura l  fa t igue t e s t i ng  of 

beam specimens i n  which one of the variables was a i r  entrainment. The 

fa t igue l i f e  of the air-entrained concrete was s l i gh t ly  greater  than 

non-air-entrained groups. This f inding i s  only of limited i n t e r e s t ,  

however, since the d i f fe ren t  groups tha t  were compared contained 

d i f fe ren t  cements, and the var iable  of a i r  content was not singled out 

for  comparison. Also, the load h i s t o r i e s  of the t e s t  beams varied,  

making a comparison of fa t igue l ives  d i f f i c u l t .  In the  second study, 

4 
Antrim and McLaughlin performed ax ia l  compression fa t igue t e s t s  on 

two types of concrete, one air-entrained and the other containing only 

na tura l  a i r .  This study resulted i n  two major conclusions: 

1. The fatigue behavior of non-air-entrained plain concrete and 
air-entrained plain concrete i n  compression a re  not s ign i f i -  
cant ly  d i f fe ren t .  However, there i s  an indication tha t  a i r -  
entrained concrete exhibi ts  longer fatigue l i f e  a t  low s t r e s s  
r a t i o s  ( less  than about 77% of s t a t i c  compressive s t rength)  
and shorter fa t igue l i f e  a t  higher s t r e s s  levels.  

2 .  There i s  considerably less  var ia t ion present among fat igue 
t e s t  data  for  air-entrained plain concrete than there  i s  for 
non-air-entrained concrete. 

This study i s  of i n t e r e s t  since an air-entrained concrete was 

included, although a t  only one air-content level.  However, the f a i l u re  

of highway pavements i s  essen t ia l ly  a t ens i l e  f a i l u re ,  and t h i s  study 

involved loading of specimens i n  compression; thus, an assumption of 

the behavior of concrete pavement based on the r e su l t s  of t h i s  study 

would be a dangerous extrapolation of the findings. 



2. PURPOSE AND SCOPE 

While a l l  of the modern pavement design procedures recognize 

the importance of fa t igue l i f e  of concrete and a i r  entrainment i s  

being used fo r  a l l  concrete pavements, design curves current ly  being 

used i n  the design of portland cement concrete pavements do not r e f l e c t  

the e f fec t  of a i r  entrainment. The basic fa t igue data ,  on which concrete 

pavement designs have been based for  the past 40 t o  50 years,  were 

derived i n  ear ly  19201s, 20 years before the introduction and 40 years 

before the widespread use of air-entrained concrete. No da ta  are  avai lable  

on the fa t igue behavior of air-entrained concrete i n  flexure.  

In l igh t  of the extensive use of a i r  entrainment and the growing 

in t e r e s t  i n  economy and efficiency of design, i t  becomes self-evident 

tha t ,  i n  order t o  properly design concrete pavements, a study of the 

e f fec t s  of a i r  entrainment on the fatigue behavior of concrete i n  flexure 

is urgently needed. The purpose of t h i s  study i s  t o  evaluate the e f f ec t s  

of a i r  entrainment on the fa t igue strength of pla in  concrete and establ ish 

preliminary fa t igue curves for  air-entrained concrete t o  be used i n  

concrete pavement design. 

The scope of t h i s  work includes f lexural  fa t igue tes t ings  of 

concretes a t  various levels  of a i r  entrainment, prepared with one 

aggregate and grading, one cement type, and a t  one water-cement r a t i o .  



3. MATERIALS AND PROCEDURES 

3.1. Test Program 

The objective of t h i s  invest igat ion was t o  determine the e f f ec t  

of varied a i r  content on the f lexura l  fa t igue strength of pla in  concrete. 

To optimize the research e f f o r t ,  the t e s t  program was designed with 

a i r  content as the only independent variable.  A l l  other variables such 

as  age of concrete when tes ted,  water-cement r a t i o ,  aggregate type, 

curing conditions, temperature, and cement type were held constant. 

A t o t a l  of f i v e  laboratory mixes with a i r  content as the only var iable  

were studied. 

The age var iable  was eliminated by t e s t i ng  a l l  batches a t  an age 

of 28 t o  56 days. This meant that  a concrete batch was mixed and 

poured approximately once each month. After the i n i t i a l  28-day period 

when the f i r s t  batch was curing, fa t igue tes t ing  proceeded a t  a contin- 

uous ra te .  The f i r s t  batch was tes ted a t  the same time the second batch 

was curing. A t  the end of the 28-day period, t es t ing  of the f i r s t  batch 

was completed, the th i rd  batch was poured, and t e s t i ng  of the second 

batch began. This cycle was continued u n t i l  t es t ing  of a l l  f i ve  batches 

was complete. 
" 

The or ig ina l  t e s t  program fa i led  t o  allow fo r  machine down time, 

i n  that  problems with the fa t igue machine were encountered during t e s t i ng  

of the first batch. Because of t h i s ,  Batch A was actual ly  tested a t  

an age of 48 t o  97 days. Batches B through E were tes ted according t o  

the schedule outlined above. As w i l l  be demonstrated l a t e r ,  the  age 

variable ( in  Batch A) had no e f f ec t  on the fa t igue behavior up t o  97 days. 



Beams for  fa t igue tes t ing  were 6 in. x 6 in .  x 36 in. A modulus 

of rupture t e s t  was performed on the f i r s t  18 in.  of the beam (Fig. la) 

and a fa t igue t e s t  on the remaining unstressed portion (Fig. lb) .  This 

procedure provided a companion modulus of rupture t e s t  fo r  each individ- 

ual  fa t igue t e s t .  After the modulus of rupture t e s t  and pr ior  t o  the 

fatigue t e s t i ng  each beam was sealed i n  a p l a s t i c  bag t o  maintain a 

saturated moist condition. Previous studies38 have found tha t  i f  the 

beams a re  allowed t o  a i r  dry during fa t igue t e s t i ng  the s ca t t e r  of the  

data w i l l  increase. This is believed t o  be due t o  d i f f e r e n t i a l  s t r a in s  

generated by moisture gradients within the beam. 

The s t r e s s  level  for  fa t igue t e s t i ng  of each specimen was arrived 

a t  by taking a percentage of the modulus of rupture. This s t r e s s  

level  was then converted t o  an equivalent load t o  be applied t o  the  

bean. Fatigue tes t ing  consisted of repeated applications of t h i s  

constant equivalent load u n t i l  f a i l u r e  occurred. Fatigue t e s t s  were 

made a t  four s t r e s s  levels  corresponding t o  90, 80, 70, and 60% of 

the modulus of rupture. Six specimens were tes ted a t  each s t r e s s  level ,  

corresponding to  an anticipated 95% confidence l i m i t .  
23,27 

The main fa t igue t e s t  program was supplemented by f ive  addi t ional  

investigations;  these investigations were centered around the following 

subjects :  

1. Modulus of rupture t e s t s ,  

2. Compressive strength t e s t s ,  

3. Modulus of e l a s t i c i t y  determination, 



A. MUDULL& OF RUPTURE TEST 

B. FATIGUE TEST 

Fig. 1 Schematic diagram of loading arrangements. 



4. comparison of a i r  determination methods, and 

5. Concrete microstructure by scanning electron microscopy and 

mercury penetration porosimry. 

3.2. Materials 

Concrete used for  laboratory t e s t  specimens consisted of an Iowa 

Department of Transportation C-3 mix with Class V aggregatefi4 The 

water-cement r a t i o  used was .41 for  a l l  batches, s l i gh t ly  less  than 

0.43 ca l led  for  i n  Iowa specif icat ions .  Coarse aggregate consisted 

of crushed limestone from the Alden quarry near Alden, Iowa. Fine 

aggregate (concrete sand) was obtained from Hal le t t  Construction 

Company i n  Ames, Iowa. Both coarse and f ine  aggregates came from Iowa 

D.O.T. approved stockpiles.  The coarse aggregate had a saturated-surface- 

dry specif ic  gravity of 2.55 and absorption of 2.46%. The f ine  aggregate 

had a saturated-surface-dry specif ic  gravity of 2.59 and water absorption 

of 1.33%. Further information regarding aggregate gradation and spec i f i -  

cations can be found i n  Tables A-1  and A-2 of Appendix A and reference 44. 

As  may be observed i n  the tab les ,  the coarse and f ine  aggregates u t i l i zed  

meet the Iowa D.O.T. specif icat ions .  Type 1 Portland cement used i n  

the concrete batches was obtained from Marquette Cement Corporation i n  

Des Moines, Iowa. In order t o  guarantee uniformity, care  was taken t o  

assure tha t  a l l  the cement was taken from one batch a t  the cement plant.  

Chemical and physical properties of the cement are  given i n  Table A-3 

of Appendix A. 

Ad-Aire, a vinsol  r e s in  produced by the Carter Waters Company of 

Kansas City, Missouri (recommended by the engineers of the Iowa D.O.T.), 



was used as  the air-entraining agent f o r  a l l  laboratory mixes. T r i a l  

batches were run t o  determine the amount of air-entraining agent t o  

use for  a specified a i r  content. It was found tha t  t h i s  amount varied 

with respect t o  age. Due t o  t h i s  var ia t ion  it was necessary t o  run 

t r i a l  batches pr ior  t o  each concrete pour t o  determine the amount of 

a i r -entraining agent and other batch quant i t ies  necessary for  the 

desired a i r  content. 

3.3. Mixing Procedures and Quality Control 

The laboratory portion of the invest igat ion consisted of f ive  

d i f fe ren t  s e r i e s  of t e s t  specimens i n  which the only var iable  was 

the amount of a i r .  In  one batch of concrete no air-entraining agent 

was added, so tha t  the only a i r  would be the natural  a i r ,  which i s  a 

function of mixer type, amount of concrete mixed compared t o  mixer 

capacity,  e t c .  This non-air-entrained batch was used as the control  

fo r  comparison purposes. Each batch ( A  - E) consisted of approximately 

30 fa t igue beams 6 in. x 6 in. x 36 in . ,  approximately s i x  modulus of 

rupture beams 6 in. x 6 in.  x 30 in . ,  and f i f t e e n  6-in. diameter x 

12 in .  cylinders.  Approximately 1 112 cubic yards of concrete were 

required i n  each batch for  preparation of the required t e s t  and control  

specimens . 
Because uniformity of mix was of the utmost importance, a l l  mixing 

was car r ied  out i n  the laboratory. Since no mixer of t h i s  capacity was 

avai lable ,  a ready-mix t r a n s i t  mixer was rented and brought i n to  the 

laboratory. Before the batch quant i t ies  were charged in to  the mixer, 

the mixing drum was careful ly  inspected t o  determine i f  there  was any 



left-over concrete o r  mixing water l e f t  i n  the drum which would a l t e r  

the desired mix. This procedure allowed s t r i c t  control  of the concrete 

batch quant i t ies  throughout the  mixing procedure. Batch quant i t ies  

(see Table A-4 of Appendix A) were weighed, corrected for  moisture content, 

and charged i n t o  the empty mixing drum. After completion of a predeter- 

mined mixing time, the slump and p l a s t i c  a i r  content of each batch was 

measured and recorded. The fresh concrete was then transferred t o  

the beam molds by wheelbarrow. A l l  mixing procedures u t i l i z e d  were 

i n  accordance with ASTM C 192. Flexural specimens were vibrated according 

t o  ASTM C 192 using a small laboratory type pencil  vibrator with a 1-in. 

head which operated a t  10,500 vibrat ions  per minute. A s  the concrete 

was being placed i n  the  forms control  cylinders were ca s t  i n  6 in .  by 

12 in.  waxed cardboard cylinder molds tha t  were f i l l e d  with concrete 

representative of tha t  i n  the beams. 

Imed ia t e ly  a f t e r  i n i t i a l  s e t  the  beams and cylinders were covered 

with wet burlap and heavy polyethylene sheet t o  assure proper and 

uniform curing conditions. 

After an i n i t i a l  curing period of 24 t o  48 hours, the forms were 

str ipped and the beams removed. They were then transferred t o  large 

metal tanks where they were stored submerged i n  water u n t i l  t es t ing .  

A i r  content determination t e s t s  were performed on the fresh concrete 

using standard a i r  meters of the pressure type throughout the investiga- 

t ion (ASTM ~ 3 1 ) ~ ' ~  In  addit ion t o  the  Iowa Sta te  University a i r  meters, 

two a i r  meters were borrowed from the Iowa Department of Transportation 

fo r  comparison. Both s e t s  of meters were cal ibrated pr ior  t o ,  and used 

only fo r ,  t h i s  investigation.  A i r  meter readings from both s e t s  of meters 



were i n  c lose  agreement throughout the t e s t  program. For consistency 

a l l  p las t ic  a i r  t e s t s  were performed by one operator throughout the 

investigation.  Fresh a i r  contents were l a t e r  compared with hardened 

a i r  contents obtained by high pressurea6 and l inear  t raverse  methods. 
7 

3.4. Equipment 

Modulus of e l a s t i c i t y  and compression t e s t s  were performed on 

k 
a 400 universal  t e s t i ng  machine. ASTM standards C 39 and C 469 

12 

were adhered t o  during a l l  t e s t s .  A concrete cylinder compressometer 

was used for determination of the modulus of e l a s t i c i t y .  The 400k 

t e s t  machine i n  conjunction with a one-third point load f ix tu re  (see 

Fig. 2) was used for  modulus of rupture t e s t s .  The overhanging portion 

of the t e s t  specimen caused an insignif icant  amount of s t r e s s  of opposite 

sense a t  the  c r i t i c a l  t e s t  sect ion and thus i t s  e f f e c t  i s  negligible.  

After the modulus of rupture t e s t ,  the longer portion of the t e s t  specimen, 

which was approximately 24 in. long, was placed i n  an Instron Model 1211 

dynamic cycler f o r  fa t igue tes t ing .  The portion of the  beam used i n  

the fatigue t e s t  was the overhang portion of the beam and thus was 

s t r e s s  f ree  i n  the modulus of rupture t e s t .  The Instron was modified 

so tha t  f lexural  one-third point loading was applied (Fig. 3). As may 

be seen i n  Fig. lb ,  the loading on the t e s t  specimen is  a t  the  same 

spacing as  i n  the modulus of rupture tesk (Fig. l a ) .  The dynamic 

cycler  has a 2 20,000 l b  force capabi l i ty  with the a b i l i t y  t o  t e s t  from 

0 t o  15,000 l b  i n  tension. The frequency of load application can be 

varied from 5 t o  35 cycles/sec.  A l l  t e s t s  during t h i s  investigation 



Fig. 2 Photograph of the modulus of rupture test set-up showing support 
conditions for the third-point flexural loading scheme. 

Fig. 3 Photograph of the Instron dynamic cycle used for fatigue testing. 
Note plastic bag around test beam to maintain moist condition. 



were run a t  5 t o  7.5 cycles/sec. ~ e s l e r ~ l  has shown that  speed of 

tes t ing  between 70 and 440 cycles/min. has a negligible e f fec t  on the 

fatigue strength of plain concrete. The bottom f ibe r s  of the specimens 

were subjected to  a nominal minimum load to  tension load cycle f o r  

fa t igue t e s t i ng  with tension corresponding t o  the maximum f lexural  

load applied. 

A i r  contents of hardened concrete by high pressure a i r  meter and 

by l inear  traverse methods were performed a t  Iowa D.O.T. laboratories 

with Iowa D.O.T. equipment. 

Microstructures of hardened concrete were studied using a JEOL 

JSM-U3 scanning electron microscope and a Micromeritics Model 905-1 

mercury porosimeter. 



4. RESULTS AND DISCUSSION 

4.1. Physical Properties 

In  the following sections the experimentally determined physical 

charac te r i s t ics  for  the f i ve  batches of concrete tes ted i n  t h i s  study 

are  presented. A summary of the concrete properties a r e  presented i n  

Table 1. The 28-day compressive strength presented i s  the average 

of three compression t e s t s ,  modulus of e l a s t i c i t y  value i s  the  average 

of two t e s t s ,  and the modulus o f  rupture value is  the average of a l l  

beams tested i n  each batch. Note tha t  the data presented i n  Table 1 

is i n  order of increasing a i r  contents. Batch designations represent 

order of pour, i .e . ,  A was f i r s t ,  B second, and so for th .  

4.1.1. Modulus of Rupture 

In  addition t o  modulus of rupture s t resses  obtained i n  the fatigue 

beams, two modulus of rupture t e s t s  were performed per each addit ional 

beam i n  order t o  es tab l i sh  the degree of va r i ab i l i t y  within and between 

the various beams of a given batch. It was found tha t  occasionally a 

s ign i f ican t  difference would occur (up t o  12%); however, the difference 

between companion breaks was usually less  than 3%. The method of supply- 

ing a companion s t a t i c  t e s t  fo r  each fatigue t e s t  is f e l t  t o  be the 

most accurate when dealing with a nonhomogeneous mater ia l  such as concrete. 

The r e su l t s  of the modulus of rupture t e s t s  are  plot ted i n  Fig. 4. 

The curve shown represents a log-log regression analysis with a correla- 

t ion  coeff ic ient  ( r )  of -0.99. The equation of the l i n e  is:  
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PERCENT AIR 
F i g .  4 Modulus of rupture vs percent a i r .  



where f i s  the  modulus of rupture and Pa i s  the percent a i r .  (Hence- r 
for th ,  "percent of a i r"  r e f e r s  t o  p l a s t i c  a i r  content unless otherwise 

s t a t ed . )  Modulus of rupture values observed i n  the laboratory a r e  

higher than can be expected i n  the f i e l d ,  due primarily t o  the superior 

curing conditions available i n  a laboratory environment. The r e s u l t s  

of these t e s t s  show tha t  as  the  a i r  content of concrete increases the 

modulus of rupture decreases a t  a second-order r a t e .  This finding 

agrees with the general re la t ionship between t ens i l e  strength of 

concrete and the square root of the compressive strength. 

4.1.2. Compressive Strength 

Results of the 28-day compressive t e s t s  are  shown i n  Fig. 5. 

The l i ne  represents a l inear  regression analysis,  the equation of which 

is: 

fd = 313.95 Pa 4 6000 

where E '  is the 28-day compressive strength,  Pa is the percent a i r ,  
C 

and the cor re la t ion  coef f ic ien t  ( r )  is -0.98. From these t e s t s  i t  

can be concluded tha t  the compressive strength of concrete decreases 

l inear ly  as  a i r  content increases, about 300-psi or 6 t o  12% decrease 

i n  strength for  each percent of a i r  added. 

4.1.3. Modulus of E la s t i c i t y  

As the amount of entrained a i r  i n  a concrete specimen goes up 

the e l a s t i c  behavior of the concrete i s  altered.  Fig. 6 shows the 

e f f ec t  of a i r  on the modulus of e l a s t i c i t y  of plain concrete. 



Fig. 6 Modulus of e la s t i c i ty  vs percent a i r .  

PERCENT A I R  

Fig. 7 Unit weight vs percent a i r .  



The equation of t h i s  l i ne  i s :  

Ec = -0.28 Pa + 5.42 

where Pa is the percent a i r  i n  the concrete, the correla t ion coeff ic ient  

6 
( r )  i s  -0.96, and E i s  the modulus of e l a s t i c i t y  i n  LO ps i .  Modulus 

C 

of e l a s t i c i t y  t e s t s  were made using a standard concrete cylinder compresso- 

meter with a d i a l  gage attachment. The e l a s t i c  modulus was determined 

by taking the difference between s t r a i n  readings a t  354 and 1768 ps i  

s t ress .  These values correspond t o  10,000 and 50,000 l b  loads, 

respectively. 

4.1.4. Unit Weight 

The r e s u l t s  of the un i t  weight determinations are  shown i n  Fig. 7. 

A loss i n  un i t  weight of approximately 2 lblcu f t  accompanied the addition 

of 1% a i r .  

4.2. A i r  Content 

The benef i ts  of a i r  entrainment i n  concrete with respect t o  freeze- 

thaw, sal t -scal ing res is tance,  and workability have been discussed ea r l i e r .  

Depending on the maximum s i z e  of aggregate(and therefore on the amount 

of a i r  bubbles i n  mortar), the usually recommended t o t a l  a i r  content 

ranges from about 5% for  a 2-in. aggregate t o  about 8% for  a 112-in. 

aggregate. 

Although t o t a l  a i r  content is  specified and measured i n  current 

pract ice ,  the more important a i r  void property influencing concrete 

durab i l i ty  i s  a parameter ca l led  the spacing fac tor ,  i . e . ,  the average 

distance from any point i n  the paste t o  the periphery of the nearest 



a i r  bubble. As the spacing factor  decreases, the freeze-thaw durab i l i ty  

increases. It has been found that  for  proper durab i l i ty  a maximum 

3 
spacing fac tor  of about 0.01 in.  is required. Warren has shown tha t  

the void-spacing fac tor  i s  decreased by about half  when a i r  content i s  

increased s l i g h t l y  above tha t  obtained without using an air-entraining 

agent. For a i r  contents greater than about 3% the void-spacing factor  

decreased only s l i gh t ly  with an increase i n  a i r  content of from 3 t o  8%. 

This f inding indicates  tha t  there  i s  l i t t l e  advantage i n  increasing 

a i r  content beyond about 4%, especially i n  view of the reduction i n  

strength with increase i n  a i r  content. On the other hand, i t  i s  

possible, although unlikely,  t o  obtain the recownended t o t a l  a i r  content 

but not the desired protection againstfreeze-thaw action i f  the bubbles 

are too large and not well d is t r ibuted throughout the mortar component 

of the concrete. 

From the above discussion the following can be concluded: 

1. There ex i s t s  an optimum range of a i r  contents which gives 
the desirable  qua l i t i e s  of durab i l i ty  and workability without 
undue loss of strength. 

2. There is a need for  a be t t e r  or a l t e rna t e  method of specifying, 
measuring, and control l ing a i r  content i n  concrete other than 
t o t a l  a i r  content. 

A i r  content of concrete i n  the p las t ic  s t a t e  can be measured 

by the pressure method (ASTM C 231), the volumetric method (ASTM C 173), 

or  the gravimetric method (ASTM C 138). The a i r  content of hardened 

concrete can be measured by the high pressure a i r  methodz6 or  various 

microscopic methods; among these a r e  the point count method, the a rea l  

traverse method, and the l inear  t raverse  method. 31,41 



An Iowa Department of Transportation high pressure a i r  meter was 

used for  determining the a i r  content of 4-in. diameter hardened concrete 

cores d r i l l e d  from end sections of tes ted fa t igue beams. Cores were 

f i r s t  oven dried for  72 h r s  a t  300°~ ,  and then cooled fo r  a period of 

3 hrs .  After weighing, the cores were soaked i n  water for  48 h r s .  The 

cores were then weighed i n  water, removed and patted dry with a c lo th ,  

and weighed again i n  a i r  t o  determine the water absorption. With 

specimen preparation complete, the cores were placed i n  the high 

pressure a i r  meter. Pressure of approximately 5000 ps i  was then applied 

t o  the specimen chamber by means of a cylinder piston. A d i a l  reading 

was recorded from which the a i r  content of the core could be computed. 

Detailed information concerning the high pressure a i r  t e s t s  can be 

obtained by consulting Test Method No. Iowa 407-A, A p r i l  1971, Iowa 

Department of Transportation, Materials Department. 

Linear traverse a i r  content determinations were performed according 

t o  ASTM C 457, with a few modifications as  noted below. Specimens were 

a lso cut  from the end sect ion of tes ted fatigue beams using a diamond 

saw. The same beams were used t o  obtain l inear  traverse specimens 

and high pressure a i r  specimens. Each l inear  traverse sample was 

polished with wet s i l i con  carbide paper of grades 120, 240, 320, 400, 

and 600. Polishing time was approximately 15 min. for  each grade 

except the 120 grade which was applied for  30 min. A t o t a l  t raverse  

of 100 in.  was obtained from a minimum area of 24 sq. in.  Minimum 

distance between traverses was taken as  0.2 in .  A l l  measurements 

were made a t  a magnification of 50 times. Both t o t a l  and less  than 

1 mm diameter a i r  contents were determined, the l a t t e r  being considered 



by many as the upper l i m i t  of "entrained ai r ."  To determine voids 

less  than 1 mm i n  diameter, the counter reading corresponding t o  

1 mm was determined. A t raverse  was f i r s t  completed for  t o t a l  a i r ,  

and then a l l  voids larger than 1 mm or par ts  thereof were counted along 

the same traverse.  The amount of less  than 1 mm a i r  was then deter-  

mined by taking the difference between these two readings. Spacing 

factors  were a lso calculated based on equations given i n  ASTM C 457. 

The r e su l t s  of a i r  content determinations are given i n  Table 2. 

High pressure a i r  meter r e su l t s  are  compared with p l a s t i c  a i r  

contents i n  Fig. 8.  The l i ne  shown represents a l inear  regression 

analysis of the da ta  with a correla t ion coeff ic ient  of 0.99. The 

equation of the l ine  i s  

HA = 1.28 Pa + 0.25 

where HA i s  high pressure a i r  content and Pa is p las t ic  a i r  content. 

Linear t raverse  r e s u l t s  are  a lso compared with p las t ic  a i r  

contents i n  Fig. 8. The l i nea r  t raverse  curve represents a l inear 

regression with a cor re la t ion  coef f ic ien t  of 0.99. The equation of 

the l ine  i s  

LT = 1.15 Pa - 0.28 

where LT i s  l inear  t raverse  percent a i r  and Pa is the p l a s t i c  a i r  

content. Although there i s  no agreement on the differences between 

entrapped and entrained a i r ,  if for  discussion purpose a i r  voids larger 

than 1 mm are  ca l led  "entrapped a i r"  and a i r  voids l e s s  than 1 mm 

are  referred to  as  "entrained a i r , "  the following statements can be 

made. 



Table 2 .  Air content of concrete by various methods. 

Average 
Average High- Average Linear 
Plastic pressure Traverse % Air Spacing 

Batch % Air % Air < 1 nun Total Factor, in .  



PLASTIC AIR CONTENT, PERCENT 

Fig. 8 High pressure air and linear traverse air vs plastic state air 
content. 



The percent "entrapped a i r "  ( larger  than 1 mm) ranged from 0.9 

t o  1.9 with an average of 1.5 and was independent of t o t a l  "entrained 

a i r"  ( l e s s  than 1 mm) content. Spacing factor  ranged from 0.0362 in.  

fo r  2.8% a i r  (non-air-entrained) concrete t o  0.0040 in .  for  11.3% a i r  

concrete. Except for  one case,  both high pressure a i r  and l inear 

t raverse  methods yielded r e su l t s  higher than the or ig ina l  p l a s t i c  

a i r  content,  especially a t  higher a i r  content levels.  This i s  i n  

general agreement with findings of other investigators.  

Results of the high pressure a i r  t e s t s  are  compared with l inear  

t raverse  r e su l t s  i n  Fig. 9. Again the curve represents a l inear  

regression analysis with a correla t ion coef f ic ien t  of 0.998. The equation 

of the curve i s  

HP = 1.11 LT + 0.56 

where HP i s  high pressure percent a i r  and LT i s  l inear  traverse percent 

a i r .  A i r  content values determined by the high pressure method were 

consis tent ly  higher. 

2 The coef f ic ien t  of determination, r , for  a l l  three curves i s  

very c lose t o  1.00, indicating a good l inear  data f i t .  

Since pavement specif icat ions  a r e  writ ten on the basis of p las t ic  

a i r  content,  curves of t h i s  type are  useful in  establishing the 

or ig ina l  p las t ic  a i r  content any time a f t e r  placement of a concrete 

pavement . 



PERCENT A I R  BY L INEAR TRAVERSE 
Fig. 9 High pressure a i r  vs linear traverse a i r .  



4.3. Microstructure 

4.3.1. Scanning Electron Microscopy 

A JEOL/JSM-lJ3 scanning electron microscope was used t o  visual ly  

examine the microstructure of hardened concrete specimens from a l l  

batches. The purposes were: (1) t o  es tabl ish the differences,  i f  

any, between entrapped and entrained a i r , ( 2 )  t o  determine the e f f ec t  

of a i r  entrainment on the pore s t ructure  and pore s i z e  d i s t r ibu t ion ,  

and (3) t o  examine the microcracks i n  the cement paste matrix caused 

by s t ress .  

The r e l a t i ve  s i z e  of entrained versus entrapped a i r  is a subject  

that  few au thor i t i es  agree on. 8eville3' indicates  tha t  entrained 

a i r  i s  of the magnitude of 0.5 nun (0.02 i n . ) ,  with a range between 

0.5 and 1.30 mm (0.002 and 0.05 in . ) ,  while entrapped a i r  forms much 

larger bubbles. Other au thor i t i es  give varying parameters for  the 

d i f fe ren t ia t ion  between entrained and entrapped a i r .  Among those 

who believe there  i s  a s i ze  difference between entrapped and entrained 

a i r ,  the dividing s i z e  seems t o  be 1.00 nun. 

Scanning Electron Microscope photographs are  shown i n  Fig. 10, 

12, and 12. A l l  specimens observed under the scanning electron 

microscope were taken from end sections of beams subjected t o  fa t igue 

loading a t  70% of the s t a t i c  modulus of rupture. 

Figure 10 shows the s i ze ,  shape, and s i z e  d i s t r ibu t ion  of a i r  

bubbles of typical  non-air-entrained (2.8% a i r ) ,  normal air-entrained 

(6.4% a i r ) ,  and high air-entrained (11.3% a i r )  concrete a t  about 

100 magnification. Figures 11 and 12 show micrographs of the same 









three  concretes a t  about 300 and 1000 magnifications. Details  of 

Fig. 10a i s  shown i n  Fig. 12a and those of Fig. lob and c are shown 

i n  Figs. I lb  and c .  

The introduction of air-entraining agent increased the number of 

bubbles, the bubble density,  and the uniformity of a i r  bubbles; t h i s  

i s  most evident from Fig. 10. The spacing factors  a r e  indicated for  

visual  comparison. A i r  bubbles i n  air-entrained concrete consis t  of 

a uniform d is t r ibu t ion  of very small a i r  voids, mostly between 0.02 

and 0.10 m (20 and 100 bm) ; few a re  as large as  0.2 m and some are  

as  small as  0.005 m (5 pm), and are usually spherical  i n  shape. 

However, a i r  bubbles as large as 1.5 nun, although not shown i n  the 

micrographs presented, have been observed. The i n t e r i o r  of most a i r  

bubbles i s  usually smooth ' ance. The air bubbles of the 

non-Air-entrained concret l l y  be characterized by a lack 

of intermediate s i z e  bubbles, presence of large bubbles (as large as 

2 mn), and by bubbles of more i r regular  shapes and rough in t e r io r  

texture (Fig. 12a). However, smooth, spherical  a i r  bubbles of s izes  

i n  the range found i n  air-entrained concrete can a l so  be found.(Fig. 

l l a ) .  From these micrographs i t  i s  d i f f i c u l t  t o  conclude tha t  there  

i s  a dividing l i ne  between entrained and entrapped a i r  based on s i z e  

and shape. The d i f fe ren t ia t ion  between entrained and entrapped a i r  

should, therefore,  be based on in ten t  and e f fec t  ra ther  than a s t r i c t  

s i z e  determination. Entrained a i r  i s  a uniform network of small a ir  

voids intent ional ly  placed i n  a concrete m i x .  Entrapped a i r  can be 

any s i ze  a i r  void natural ly  present i n  the mater ia l  and/or caused 

by mixing action or improper compaction. Entrapped a i r ,  due t o  i t s  



uneven distribution,and i t s  often large s i ze  and spacing fac tor ,  does 

not have a benef ic ia l  e f fec t  on freeze-thaw durabi l i ty .  

A s  shown i n  Figs. 10a, l l a ,  l l c ,  and 12, microcracks can be observed 

i n  specimens subjected t o  s t r e s s .  Fatigue behavior of metals i s  based 

on crack propagation and growth on a microscopic scale.  Microcracks 

i n  concrete have been observed under dynamic as  well as s t a t i c  loads. 10 

It would seem tha t  some pa ra l l e l  could be drawn between the fatigue 

behavior of metals and concrete. In  order for  t h i s  t o  be done the 

i n i t i a t i o n  and propagation of microcracks i n  concrete must be well 

documented and understood. This subject should be pursued i n  fu ture  

s tudies  t o  be t t e r  understand the fatigue behavior of concrete. 

4.3.2. Pore Size Analysis by Mercury Porosimetry 

Most of the important properties of hardened concrete, especially 

strength and durab i l i ty ,  are  influenced by the quantity, s ize ,  and 

s i z e  d i s t r ibu t ion  of various types of pores i n  the concrete. In  an 

attempt t o  characterize and quantify the pores of concrete specimens 

with various a i r  content, mercury porosimetry was used. 

The pr inciple  of the mercury penetration technique i s  qui te  simple 

The s i ze  and quantity of pores i n  sol id  materials are measured by 

determining the quant i t ies  of a nonwetting l iquid - mercury - t ha t  i s  

forced in to  the pores under investigation a t  various pressures. The 

equation describing the penetration of mercury in to  pores under 

49 pressure is given by Washburn : 

pr = -20 cos 8 

where p i s  the  pressure applied, r the pore radius, a the surface 



tension of mercury, and the contact angle of the mercury with respect 

t o  the sol ids .  Specimens used i n  t h i s  study were concrete cores,  1 in. 

long by 1 in.  diameter, d r i l l ed  from s l i c e s  cu t  from the end section 

of t e s t  beams. Prior t o  placing the specimen i n  the sample c e l l  of 

the porosimeter, the concrete core is soaked i n  acetone fo r  several  

hours to remove lubricant used i n  d r i l l i n g  and then oven-dried. The 

sample c e l l ,  containing the specimen, i s  then placed i n  the pressure 

chamber of the mercury porosimeter. A vacuum i s  used t o  evacuate the 

chamber so that  the pressure gages w i l l  indicate the net pressure, p, 

used i n  the Washburn equation. Once the pressure chamber i s  evacuated, 

mercury i s  l e t  i n to  the chamber, f i l l i n g  the sample c e l l  and immersing 

the specimen. Knowing the volume of the mercury which flows i n t o  

the sample c e l l  and the volume of the  sample c e l l ,  i t  is possible t o  

ca lcu la te  the bulk volume of the sample. As pressure i s  applied, 

mercury intrudes the specimen. Both the volume of mercury which 

intrudes the specimen and the corresponding pressure are  measured. 

Using these data i n  the Washburn equation, i t  i s  possible t o  compute 

the radius of pore which i s  being intruded a t  a given pressure. 

After completion of the pressurization/mercury penetration measure- 

ments, a de-pressurization/mercury re tent ion can be run. Mercury 

expelled from pores as  a function of decreasing pressure can be measured. 

This gives information about the shape and s t ructure  of the pores. 

The porosimeter used i n  t h i s  study was a Micromeritics Model 905-1 

Mercury Penetration Porosimeter. It  has a pressure range from about 

2.7 t o  50,000 ps i  fo r  large sample c e l l .  Using a mercury surface tension 

of 474 dyn/cm a t  2 5 ' ~  and a contact angle with concrete of 130°, i t  is 



possible t o  measure pore diameters between 32.7 and 0.00354 pm. 

A t  l eas t  three cores were tes ted from each batch. The r e s u l t s  are 

presented i n  two ways: (a) cumulative pore volume d is t r ibu t ion  curves 

(Figs. 13, 14, and 15) and (b) cumulative pore volume as percent of 

t o t a l  pore volume versus pore diameter curves (Figs. 16, 17, and 18). 

In discussing mercury penetration r e s u l t s  and comparing them 

with a i r  content r e su l t s  of hardened concrete measured by conventional 

methods, the following should be noted: 

0 As indicated i n  pore s i z e  d i s t r ibu t ion  curves the maximum 
pore s i z e  detected by mercury penetration technique i s  about 
10 pm, which i s  the lower l i m i t  of a i r  bubbles which can be 
measured by conventional a i r  content determinations. 

0 The calculated pore diameter is  the equivalent diameter of 
the pore entrance ("pore entry diameter") of interconnected 
o r  open pores; the t o t a l  volume of pore may not include a l l  
i solated d i sc re te  a i r  bubbles. 

0 The pore volume of the concrete specimens included pores i n  
the paste (capi l lary and ge l  pores), pores i n  the aggregate, 
"under-aggregate" f i s sures  ,47 and, i n  some cases,  stress-induced 
microcracks. 

Recognizing the above cha rac t e r i s t i c s  of mercury penetration data,  

the following can be observed: 

1. In  s p i t e  of the heterogeneous nature of the concrete material  
dea l t  with and the l imita t ions  of the small sample s izes ,  the 
r e su l t s ,  as seen i n  Figs. 13 and 14, are  surprisingly reproduc- 
ib le .  

2. A t  low a i r  entrainment (2.8 and 3.5% a i r ) ,  the added a i r  
had essen t ia l ly  no e f f e c t  on the pore s t ructure  of cement 
paste. The t o t a l  porosity of the concrete can be a t t r ibu ted  
t o  the porosity of the aggregate and cap i l la ry /ge l  pores 
(see Fig. 15). 

3.  A t  a t o t a l  a i r  content larger  than 3.5%, as the a i r  content 
increases, there is an increase i n  t o t a l  porosity and pore 
volume (Figs. 15 and 18). This increase was mainly re f lec ted  
i n  the  volume of "large" (1 to  10 pm) pores with l i t t l e  e f f ec t  
on smaller pores (between 1 and 0.008 pm), corresponding 



PORE DIA., p m  

Fig. 13 Cumulative pore volume as  percent of bulk volume of concrete 
vs pore diameter - (Non-air-entrained concrete) .  

PORE DIA., 11 m 
Fig. 14 Cumulative pore volume as percent of bulk volume of concrete 

v s  pore diameter - 11.3% a i r .  
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Fig. 17 Cumulative pore volume as percent of total pore volume vs 
pore diameter - 11.3% air. 





roughly t o  the cap i l la ry  pores. 5947'50 This increase may 
a l so  be noted i n  Fig. 19,in which percent of pores larger 
than 1.0 pm was plot ted against t o t a l  a i r  content and 
porosity. Pore volume between 1 and 10 ym (excluding 
pores i n  aggregate) increased from 0.5% fo r  2.8% a i r  
(non-air-entrained) concrete t o  11.0% f o r  11.3% a i r  concrete. 
The percent pores i n  the 0.008 t o  1 pm range remained 
essen t ia l ly  unchanged a t  about 11% (including aggregate 
pores). Although microcracks could cause some increase i n  
porosity i n  the range between 1 and 10 pm, the consistent 
increase i n  pore volume i n  t h i s  region with increasing a i r  
content suggests tha t  i t  was the d i r ec t  r e s u l t  of a i r  
entrainment. 'Some evidence of these a i r  bubbles was a lso 
observed i n  SEM micrographs. 

4. The median pore diameter (D50) a lso increased with t o t a l  
a i r  content,  from 0.1 pm a t  2.8% a i r  t o  1 .3  pm a t  11.2% 
a i r  (Fig. 20). 

5. Figure 21 shows the re la t ionship between mercury retained 
i n  the pores a t  atmospheric pressure as percent of volume 
of mercury f i l l e d  a t  maximum pressure (40,000 ps i )  and 
percent t o t a l  a i r  (porosity). Since lower percent re tent ion 
indicates  pores with more o r  less  uniform cross  sections 
and large re tent ion indicates pores with enlargements or  
cons t r ic t ions  (ink-bott le pores),5 the increase i n  mercury 
re tent ion with increase i n  a i r  content indicates  tha t  the 
a i r  entrainment introduces more non-uniform pores. This 
i s  a l so  shown i n  the uniformity coef f ic ien t  (D40/D80) 
versus a i r  content curve (Fig. 22), higher uniformity co- 
e f f i c i e n t  indicat ing l e s s  uniform pore s i ze  dis t r ibut ion.  

4.4. Results of Fatigue Tests 

One hundred and twelve beams were subjected t o  f lexural  fa t igue 

tes t ing.  As has been previously s ta ted,  beams of f ive  d i f fe ren t  a i r  

contents (2!8%, 3.5%, 6.4%, 10.2%, and 11.3%) were tes ted.  

Within each a i r  content group, beams were tes ted a t  four d i f f e r en t  

s t r e s s  levels.  A minimum of f ive  beams within each of the groups 

were tes ted a t  each s t r e s s  level. The only exception was i n  the f i r s t  

group (3.5% air) ,where,  due t o  fa t igue machine down time, fewer beams 
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Fig. 19 Relationship between volume of large mode pores and total 
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Fig. 20 Relationship between air content/porosity and median pore 
diameter. 

Fig. 21 Relationship between volume of mercury retained and total 
air content/porosity. 
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were tes ted a t  two of the s t r e s s  levels. Modulus of rupture strength,  

maximum load applied as  a percentage of modulus of rupture, and fatigue 

l i f e  for  each specimen are  given i n  Tables B - 1  through B-5 i n  Appendix B. 

Each specimen l i s t e d  i n  these tables  has a three-digit  designation, f o r  

example, 3-B-21; the f i r s t  number indicates the percent of p las t ic  

a i r  i n  the concrete rounded t o  the nearest whole number, the l e t t e r  

designates the specimen as being a beam, while the second number i s  

simply the specimen number and var ies  from 1 t o  the number of specimens 

c a s t  i n  each batch. Specimens which did not f a i l  are  a lso indicated 

i n  these tables.  As may be noted, specimens which did not f a i l  were 

loaded a minimum of 2 mill ion cycles. In  each case the minimum s t r e s s  

applied was approximately 15 ps i .  Therefore, the beams were stressed 

so tha t  the bottom f ibe r  s t r e s s  varied from essen t ia l ly  zero t o  a 

maximum value of 60, 70, 80, o r  90% of the modulus of rupture strength.  

Figure 23 shows the f a i l u re  faces of modulus of rupture specimens 

(upper section) and fat igue specimens (lower section) for  three a i r  

contents: 2.8, 6.4, and 11.3%. By observing the f a i l u r e  surfaces, 

one may note tha t  there i s  no visual  difference between the modulus 

of rupture f a i l u r e  surface and the fatigue f a i l u r e  surface for  each 

of the three a i r  contents. However, there  i s  a difference between the 

f a i l u r e  surfaces of the various a i r  contents. The f a i l u r e  surfaces 

for  the low a i r  specimens exhibit  predominantly f a i l u re  through the 

coarse aggregate. Fai lure  surfaces for  the high a i r  specimens show 

some f a i lu re  of the aggregate; however, the main f a i l u r e  i s  between 

the cement paste matrix and the aggregate. Thus, i t  may be concluded 





tltaL high percentages of a i r  weaken the interlock or  bond between the 

cement past matrix and the aggregate. 

In Figs. 24 through 28 these data have been plotted on S-N curves 

f o r  each of the f ive  a i r  contents. Each of these curves is  the r e su l t  

of a log-log regression analysis plotted on a semi-log scale.  The 

cor re la t ion  coef f ic ien ts  for  the  curves varied from -0.90 t o  -0.94. 

Specimens tha t  did not f a i l  before 2 mil l ion cycles of load were assigned 

a fa t igue l i f e  of 10 mill ion cycles and have been indicated on the 

curves with small arrows. 

For comparison, the curves presented i n  Figs. 24 through 28 a re  

presented on a composite p lo t  i n  Fig. 29. A s  may be seen i n  Fig. 29, a i r  

content has a def in i te  e f f e c t  on fa t igue strength. By comparing the various 

curves with the 2.8% a i r  curve, which is  the natural  a i r  curve, i . e . ,  

no air-entraining agent added, one may see the decrease i n  fa t igue 

strength as  the a i r  content increases. Ninety f i ve  percent confidence 

l i m i t s  a r e  shown fo r  11.3 and 2.8% a i r  i n  Fig. 30. Confidence l i m i t s  

fo r  the middle range a i r  contents (3.5, 6.4, and 10.2%), although not 

included i n  t h i s  f igure  do exhibi t  a considerable amount of overlap. 

Confidence l imi t s  for  2.8 and 11.3% a i r  curves overlap only s l i g h t l y  

a t  the ends of the ranges. This indicates  t ha t  while the precise  

locations of the middle range curves are  probably not s t a t i s t i c a l l y  

s ign i f ican t ,  the trend of the data  i s  s t a t i s t i c a l l y  s ign i f ican t  and 

unmistakable. Furthermore, the curves diverge a t  the lower s t r e s s  

levels.  Based on these findings it can be concluded tha t  a i r  content 

has an undeniable e f f ec t  on the fa t igue strength of pla in  concrete i n  

flexure.  A s  a i r  content increases, the expected fatigue l i f e  of a 
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Fig. 26 S-N curve for  6.4% a i r  concrete. 
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F i g .  28 S-N curve for 11.3% a ir  concrete. 
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concrete specimen decreases. Although not obvious from the curves, 

due t o  the semi-log p lo t ,  the e f fec t  of a i r  i s  more d ra s t i c  a t  the 

lower s t r e s s  ranges than a t  higher s t r e s s  ranges. For instance, a t  

the 70% s t r e s s  level  11.3% a i r  concrete would have an anticipated 

fatigue l i f e  of 30,000 cycles compared with 200,000 cycles for  a 2.8% 

a i r  concrete. A t  the 65% s t r e s s  level ,  the values a r e  200,000 and 

1,700,000 cycles ,  respectively.  The difference i n  fa t igue l ives  of 

the two concretes a t  70% modulus of rupture i s  130,000 cycles,  while 

the difference a t  65% is 1,500,000 cycles. The lower s t r e s s  ranges 

are  c ruc i a l  with respect t o  pavement design, making th i s  divergence 

of c r i t i c a l  importance. 

A modified Goodman diagram22 for  the fa t igue data  a t  one mill ion 

cycles is shown i n  Fig. 31. Any point on a modified Goodman diagram 

of t h i s  type indicates  a load combination that  w i l l  cause a fatigue 

f a i l u re  a t  one mill ion cycles. For instance, the  diagram can be used 

i f  i t  were desired t o  cycle from 60% t o  some maximum percentage of the 

modulus of rupture instead of from zero t o  maximum. I f  the minimum 

were s e t  a t  60%, then a specimen with 11.3% a i r  could be loaded up 

t o  68% and s t i l l  f a i l  a t  one mill ion cycles. A 2.8% a i r  specimen 

could be cycled from 60% t o  73% modulus of rupture and also f a i l  a t  

one mill ion load repet i t ions .  

I f  t e s t s  were performed from zero t o  maximum load, the  11.8% 

and 2.8% a i r  specimens could be subjected t o  61% and 66.5% modulus 

of rupture, respectively,  and also f a i l  a t  l m i l l i o n  cycles. In other 

words, fo r  the same fat igue l i f e  of 1 mill ion cycles,  the low a i r  
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concrete can withstand an addit ional s t r e s s  equal t o  5 .5% of the 

modulus of rupture. 

4.5. Treatment of Fatigue Data 
by Application of Fracture Mechanics 

Fracture of a material  occurs by extension of a pre-exist ing 

flaw. The importance of the s i z e  of the  flaw depends on the f rac ture  

toughness of the material .  Crack extension occurs i n  three stages:  

subc r i t i ca l ,  c r i t i c a l ,  and running. Subcri t ical  crack extension i s  

slow and i s  measured as a length change per cycle for  fatigue.  A t  

c r i t i c a l  crack extension there i s  a t r ans i t i on  from a slowly propagating 

crack t o  a rapidly running crack. Running crack extension corresponds 

t o  f r ac tu re  of the material. In  order t o  understand the f r ac tu re  

behavior of a material  the t r ans i t i on  point from subcr i t i ca l  t o  

c r i t i c a l  crack extension must be quantified. 

Fracture of concrete can occur by fracture  of the cement paste ,  

f rac ture  of the aggregate, f a i l u r e  of the bond between cement paste 

and aggregate, or  any combination of these. For t h i s  reason concrete 

d i f f e r s  s l i gh t ly  from the idea l  crack extension behavior. "Two types 

of crack growth a re  present i n  concrete: an i n i t i a l  stage i n  which 

the r a t e  of re lease  of s t r a i n  energy with slow crack extension is so  

low tha t  any sudden increase i n  energy requirement, such as  encountering 

an aggregate, w i l l  s t ab i l i ze  the propagating crack; and a f i n a l  s tage 

where the energy release r a t e  with rapid crack propagation i s  of such 

magnitude tha t  any energy demand encountered w i l l  be supplied so tha t  

an unstable s i tua t ion  resu l t s .  "34 The t rans i t ion  between these two 



stages i s  a function of the c r i t i c a l  s t r e s s  in tens i ty  factor ,  , 
Kc 

The smaller the Kc, the smaller crack length is required for  f a i l u re  

i n  f racture .  In  general, the s t r e s s  in tens i ty  factor  (K) can be 

expressed as : 

K = JC (A)' 

where J = s t r e s s ,  A = crack length, and C i s  some constant dependent 

on the geometry of the material .  

8 Brown and Srawley developed the following expression for  K, 

for  a single-edge-cracked specimen subjected t o  pure bending: 

3 4 where Y = 1.99 - 2.47 (a/w) + 12.97 (a/w12 - 23.17 (a/w) + 24.80 (alw) , 

a is the flaw depth, w i s  specimen depth, M i s  applied bending moment, 

and B i s  specimen width. 

Rolfe and ~ a r s o m ~ '  presented equations f o r  K fo r  various other 

conditions. 

I f  s t r e s s  (or moment above) is held constant,  then the only 

var iable  for  a constant geometry section is the crack length a. The 

c r i t i c a l  s t r e s s  i n t ens i ty  factor  (K ) then corresponds t o  some c r i t i c a l  
C 

crack length ac. When t h i s  c r i t i c a l  crack length i s  reached, the 

t rans i t ion  between slow and rapid crack propagation w i l l  occur. 

Fatigue behavior of concrete can then be thought of as a phenome- 

non involving the growth of microscopic flaws. When the length of one 

of these flaws reaches the c r i t i c a l  value a f a i l u r e  w i l l  occur. 
c '  

The fatigue behavior i s  d i r ec t ly  affected by the c r i t i c a l  s t r e s s  

inkensity fac tor ,  Kc: A s  Kc goes up, ac a l so  increases. The 



importance of t h i s  statement with respect t o  understanding the fa t igue 

behavior of air-entrained concrete can be f u l l y  understood i n  l igh t  of 

the findings of Naus and ~ o t t . ~ ~  Naus and Lott found tha t  K decreased 
C 

by 8.2% when the a i r  content i n  concrete was increased from 2.0 t o  

12.0%. 

This finding indicates  a decrease i n  the c r i t i c a l  crack length a c '  

with increasing a i r  content. I f  i t  can be assumed tha t  microcracking 

occurs a t  s imilar  r a t e s  for  varying a i r  contents,  then a decrease i n  

a w i l l  mean a fewer number of load ( s t r e s s )  repe t i t ions  w i l l  be 
C 

required t o  e f f ec t  a f rac ture  or fatigue fa i lu re .  I n  other words, 

as a i r  content increases and K (and a ) decreases, fa t igue l i f e  
C C 

would be expected t o  decrease. 

This theoret ical  approach is  i n  agreement with the experimental 

findings of t h i s  investigation.  The f lexura l  fa t igue l i f e  of concrete 

was found t o  decrease as the amount of a i r  increased between the l i m i t s  

of 2.8 and 11.3%. 

4.6. Implications i n  Concrete Pavement Design 

The r e s u l t s  of two research projects carr ied out in  the ear ly  

1920's a t  Purdue and the I l l i n o i s  Department of Highways provided 

basic data f o r  the 1933 PCA fa t igue curve shown i n  Fig. 32. l3 This 

curve was used i n  conjunction with Hinor's theory32 to  evaluate the 

accumulated fa t igue e f f ec t s  of a l l  anticipated load applications,  

t o  prevent s lab  cracking, and t o  evaluate the design adequacy of a 

concrete s lab thickness for  s t r e e t s ,  highways, and a i r f i e ld s .  Minor's 
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theory applies t o  s t r e s s  repe t i t ions  above the endurance l i m i t  and 

postulates tha t  fa t igue strength not used by repe t i t ions  a t  one s t r e s s  

level  is avai lable  for  repe t i t ions  a t  other s t r e s s  levels;  Minor's 

theory i s  of ten referred t o  as the cumulative damage theory. Due i n  

part  t o  work done i n  the 1960's by Hilsdorf and ~ e s l e r ' ~  and, i n  par t  

t o  r e su l t s  of several  t e s t  roads, the 1933 PCA fatigue curve was 

replaced by the present 1966 curve. 

The fa t igue curve which resul ted from the work by Hilsdorf and 

Kesler is shown i n  Fig. 32. This curve represents a constant probabil i ty 

of 0.05, which means tha t  for  100 fat igue t e s t s  not more than f i v e  

would show fat igue strengths below the curve. Calculations of pavement 

thickness with the Hilsdorf and Kesler curve gave usable r e s u l t s ,  and 

t h e i r  curve was considered for  replacement of the 1933 PCA curve. 

However, due t o  the l imita t ions  of the Hilsdorf and Kesler invest igat ion,  

evidence from several  t e s t  roads, and performance of normally constructed 

pavements subject  t o  normal mixed t r a f f i c ,  the present PCA curve was 

adopted for  thickness design. 

Results of the current investigation are a lso shown i n  Fig. 32 

for  non-air-entrained (2.8%), medium range a i r  (6.4%), and high a i r -  

entrained concrete (11.3%). These curves a lso represent a constant 

probabil i ty of 0.05 and can therefore be compared d i rec t ly  with the 

work of Hilsdorf and Kesler and the two PCA fatigue curves. 

I t  should be kept i n  mind tha t  the curve presented by Hilsdorf 

and Kesler i s  the r e su l t  of varying s t r e s s  fa t igue,  while the findings 

of t h i s  investigation are  the r e su l t  of constant s t r e s s  fa t igue tes t ing .  



The present PCA fa t igue curve i s  conservative with respect t o  

Hilsdorf and Kesler a i r  curve as well as  the 2.8% a i r  curve of t h i s  

investigation.  When the e f f ec t  of high a i r  content is considered, 

the PCA curve is not conservative i n  the higher s t r e s s  ranges. The 

location of the 11.3% a i r  curve indicates  tha t  a pavement designed 

by current PCA procedures and containing t h i s  much a i r  could f a i l  

prematurely. This i ' l lus t ra tes  most dramatically the e f fec t  of a i r  

content on current  pavement design procedures. 

To fur ther  i l l u s t r a t e  the e f f ec t  of a i r  content, pavement designs 

were performed using the Iowa DOT Pavanent Design procedure15 with 

the fa t igue curves from t h i s  investigation as  well  as the standard 

PCA 1933 and 1966 fat igue curves. The r e su l t s  are  compared i n  terms 

of both fatigue consumption for a given s l ab  thickness and the s lab  

thickness required to  ensure against fa t igue f a i l u re .  The same design 

t r a f f i c  data  and subgrade k values were used i n  a l l  cases. The fa t igue 

curves tha t  were used are  those shown i n  Pig. 32. The d is t r ibu t ion  of 

axle loads during the design l i f e  corresponds t o  Design Example Number 2 

of reference 45. The design calculat ions  are  presented i n  Appendix C.  

The e f f ec t  of a i r  content on the modulus of rupture was taken in to  

account. Values of modulus of rupture used were 500 ps i  fo r  11.3% 

a i r ,  700 ps i  fo r  2.8% a i r ,  and 600 ps i  fo r  6.4% a i r ,  which correspond 

t o  the 600 ps i  used for  the PCA design calculations.  The r e su l t s  of 

the thickness design calculat ions  a r e  presented i n  Table 3. 

For the given subgrade, t r a f f i c ,  and modulus of rupture, based 

on Iowa D.O.T. design methods, a pavement thickness of 9.5 in. i s  

required. Using t h i s  thickness as  a basis for  comparison, the current  
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D.O.T. procedure a r r ives  a t  a value of 75.1% of the available fa t igue 

l i f e  used. The 1933 PCA fa t igue  curve r e su l t s  i n  a fa t igue l i f e  

consumption of 196.9%. With 2.8% a i r  and using the I.S.U. fa t igue 

curve, none of the fa t igue l i f e  i s  used. A t  6.4% a i r ,  16.9X of the 

fa t igue l i f e  i s  used, and a t  11.3% a i r ,  3322.6% of the fa t igue l i f e  

would be used. 

A more meaningful comparison can be made by calculat ing the 

respective pavement thickness required when each of the  fa t igue  curves 

i s  used. The current PCA fa t igue curve w i l l  require a thickness of 

9.5 in.  The 1933 curve would require 10.0 in .  I f  the fa t igue curve 

f o r  an a i r  content of 2.8% i s  used, the thickness required could be 

held down t o  7.5 in.  A 6.4% a i r  pavement would require a thickness of 

9.0 in.  However, i f  the fa t igue curve for  an 11.3% a i r  concrete were 

used, a 10.5-in. pavement would be required. This again i l l u s t r a t e s  

the  e f f ec t  of a i r  content on current pavement design practices.  

It should be noted tha t  the a i r  contents used f o r  the previous 

comparison are  out of the range of normal design for  concrete mixes. 

This, however, does not a l t e r  the basic finding of t h i s  investigation,  

t h a t  air content does indeed a f f ec t  the fa t igue l i f e  of pla in  concrete 

i n  flexure and should be considered for  optimum design of concrete 

pavements. 



5. SUMMARY AND CONCLUSIONS 

The need f o r  f a t i g u e  s t r e n g t h  d a t a  i n  t h e  design of conc re t e  

highway and a i r f i e l d  pavements has  been known f o r  years .  P r a c t i c a l l y  

a l l  r i g i d  pavement design procedures used today make use of t h e  f a t i g u e  

l i f e  of conc re t e .  The f a t i g u e  curves  p resen t ly  used were l a s t  r ev i sed  

i n  1966 and do not  take  i n t o  account t h e  e f f e c t s  of en t ra ined  a i r .  

Thus, t h i s  s tudy inves t iga t ed  t h e  e f f e c t s o f  a i r  on f a t i g u e  s t r e n g t h  

of p l a i n  concre te .  A l l  o t h e r  v a r i a b l e s  (water-cement r a t i o ,  aggregate 

type,  cement type ,  e t c . )  were he ld  cons tant .  

The previous t e x t  p re sen t s  t h e  r e s u l t s  of t h e  s tudy on t h e  f a t i g u e  

behavior of p l a i n  conc re t e  of v a r i o u s  a i r  con ten t s .  Tes t s  were conducted 

on f i v e  ba tches  of conc re t e  with a i r  con ten t s  of 2.8, 3.5, 6.4,  10.2, 

and 11.3%. Fat igue  specimens cons i s t ed  of 6 i n .  x 6 i n .  beams sub jec t ed  

t o  f l e x u r a l  loading under a  zero t o  maximum load cyc le .  under such 

cond i t ions  t h e  bottom f i b e r  of t h e  beam was subjec ted  t o  ze ro  t o  tens ion  

s t r e s s  c y c l e s .  The maximum bottom f i b e r  s t r e s s  f o r  a  s p e c i f i c  t e s t  i n  

most c a s e s  was 60, 70, 80, o r  90% of t h e  s t a t i c  modulus of rup tu re .  

Concrete f o r  a l l  ba tches  was mixed and poured i n  t h e  labora tory .  Tes t  

specimens were s to red  submerged i n  water  u n t i l  t e s t i n g  which took 

p lace  a t  a  specimen age of 28 t o  56 days. 

T e s t s  were conducted us ing  an I n s t r o n  Corporat ion model 1211 

dynamic c y c l e r  f i t t e d  wi th  a  one- th i rd  poin t  loading frame i d e n t i c a l  

t o  t h e  one used i n  t h e  modulus of r u p t u r e  t e s t .  One hundred and twelve 

f a t i g u e  t e s t s  were conducted. Resu l t s  of t hese  t e s t s  a r e  presented 

i n  both t a b u l a r  and graphic form. 



S-N diagrams show a s ignif icant  reduction i n  fa t igue l i f e  as the a i r  

content of concrete increases. This reduction is fur ther  i l l u s t r a t e d  

when S-N curves with 95% confidence l imi t s  for  a point are  used for  

pavement design. Using the I.S.U. fa t igue curves, a pavement containing 

2.8% a i r  would require a design thickness of 7.5 in . ,  while a pavement 

containing 6.4% a i r  would require a design thickness of 9.0 in .  

The main fa t igue t e s t  program was supplemented by addit ional 

investigations.  The compressive strength,  modulus of rupture, modulus 

of e l a s t i c i t y ,  and un i t  weight were determined f o r  each batch. P las t ic  

a i r  content determinations were compared with hardened a i r  contents 

determined by the l inear  traverse and high pressure a i r  meter methods. 

Scanning electron microscope photographs were taken a t  various magnifi- 

cations and various a i r  contents t o  determine charac te r i s t ics  of the 

a i r  void system. A mercury penetration porosimeter was used t o  character-  

i z e  the void properties of the concrete a t  the various a i r  contents. 

As a r e s u l t  of the various t e s t s  performed i n  t h i s  study the 

following conclusions were reached : 

1. The fat igue behavior of plain concrete i n  flexure i s  affected 
by the a i r  content of the concrete. Fatigue strength decreases 
a s  a i r  content increases. Fatigue curves obtained from t h i s  
study (Figs. 29 and 32) provide a basis  for  an improved r i g i d  
pavement design for pavements i n  which air-entrained concrete 
i s  used. Pavements designed using the high a i r  and low a i r  
fa t igue curves developed i n  t h i s  study resulted i n  a difference 
i n  thickness of several  inches. 

2. The l inear  traverse and high pressure a i r  determination 
methods a r e  r e l i ab l e  means of ascertaining the a i r  content of 
hardened concrete and can be used t o  determine the or ig ina l  
p las t ic  concrete a i r  content by mathematical means. 



3. The modulus of rupture,  compressive strength,  modulus of 
e l a s t i c i t y ,  and un i t  weight of concrete a l l  decrease as  the 
a i r  content of the concrete increases. 

4 .  As the a i r  content r i s e s  the f a i l u r e  of concrete subjected t o  
fa t igue occurs increasingly a t  the aggregate-cement paste 
interface.  The fa t igue f a i l u r e  surface i s ,  however, iden t ica l ,  
on a macroscopic level ,  t o  the modulus of rupture ( s t a t i c )  
f a i l u re  surface. 

5 .  Although i t  has been generally suggested tha t  entrained a i r  
voids are  between 1 and 0.005 nun i n  diameter and spherical  i n  
shape, and tha t  entrapped a i r  bubbles are greater  than 1 m m  
i n  diameter and i r regular  i n  shape, the SEM micrographs made 
i n  t h i s  study showed that  the two kinds of voids cannot be 
distinguished by e i the r  s i z e  o r  shape. 

6 .  A i r  entrainment had essen t ia l ly  no e f f ec t  on pores of cap i l la ry1  
ge l  s i z e  ( l e s s  than 1 ~ m ) .  However, mercury porosimetry data  
showed tha t  a t  higher a i r  entrainment, increased a i r  resul ted 
i n  more pores i n  s i z e  of 1 t o  10 pm range, between tha t  of 
conventional concept of entrained a i r  and cap i l la ry  pores. 
Also, increasing a i r  content increased the median pore diameter 
of the micropores as  well as  the non-uniformity of pore system. 



6. RECOMMENDED FUTURE STUDIES 

The present study has c l ea r ly  shown tha t  a i r  content does have 

an e f f ec t  on fa t igue concrete i n  flexure. In  view of these findings 

the following areas of concrete fa t igue i n  flexure should be pursued: 

. Effects  of varied W/C r a t i o  

r Effects of d i f fe ren t  aggregate types 

e Surface treatments and other approaches t o  increase fa t igue 
l i f e  (high density surface, polymer, sulfur  penetration, e t c . )  

0 Development of comprehensive r i g i d  pavement design curves 
applicable for  concretes of commonly used combinations of a i r  
content,  water-cement r a t i o ,  aggregate type, e tc .  
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9. APPENDIXES 



9.1. h e n d i x  A. Ma te r i a l  D e t a i l s  

Table A . 1  Gradat ion of f i n e  aggregate.  

Iowa D.O.T. 
Sieve Size  % Passing S p e c i f i c a t i o n s  

- 

318 i n .  100 100 

NO. 4 96.5 90 - 100 

NO. 8 76.6 70 - 100 

No. 16 56.0 

No. 30 36.1 

No. 50 11.1 

No. 100 0.9 

No. 200 0.4 0 - 1.5 

Table A.2. Gradat ion of coa r se  aggregate.  

Iowa D.O.T. 
Sieve S ize  % Passing S p e c i f i c a t i o n s  

1% i n .  100 100 

1 i n .  96 95 - 100 

fg i n .  37 25 - 60 

NO. 4 2 0 - 10 

NO. 8 1 0 -  5 

No. 200 0.4 0 - 1 . 5  
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m
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7 9  

9.2.  Appendix B .  Test Data 

" 
Table B.1. Test data, Batch C ,  2.8% a ir .  

% Fatigue Life, 
Modulus Number of Load 

of Applications 
Specimen Modulus of Rupture, psi  Rupture for Failure 

a 
Failure did not occur. 



Table B.2. T e s t  data, Batch A ,  3.5% a i r .  

% Fatigue Life ,  
Modulus Number of Load 

o f  Applications 
Specimen Modulus of Rupture, p s i  Rupture for Failure 

a Failure did not occur. 



Table B.3. Test data, Batch E, 6.4% air .  

% Fatigue Life, 
Modulus Number of Load 

of Applications 
Specimen Modulus of Rupture, psi  Rupture for Failure 

?Failure did not occur. 



Table B.4. Test data, Batch D ,  10.2% a i r .  

% Fatigue Life ,  
Modulus Number of Load 

o f Applications 
Spec imen Modulus of Rupture, p s i  Rupture f o r  Failure 

a 
Failure did not occur. 



Table B.5. Test data, Batch B,  11.3% a ir .  

% Fatigue Life, 
Modulus Number of ~ o a d  

of Applications 
Specimen Modulus of Rupture, psi  Rupture for Failure 

a 
Failure did not occur. 



9.3. Appendix C. Pavement Design Calculations 

Axles during design l i f e  - standard PCA design method (45) 

Axle Load 
Groups, Kips Axle Loads in  Design Life  

SINGLE 

28-30 3,700 

26-28 3,700 

24-26 7,410 

22-24 195,000 

20-22 764,400 

18-20 2,139,150 

16-18 2,870,400 

TANDEM 

52-54 3,700 

50-52 3,700 

48-50 36,270 

46-48 36,270 

44-46 57,530 

42-44 179,790 

40-42 204,750 

38-40 296,400 

36-38 319,800 

34-36 487,500 

32-34 610,350 

1,078,350 
Total  19.500.000 
Trucks 



CALCULATION OF CONCRETE PAVEMENT THICKNESS 
Lure  with Core1 Single C Toodam Axle Design Chortn l  

proj.ct D e S i ~ n  Example - Iowa M T  (Current PCA Procedurpi 
TYDB - N O . O ~  LOO@( 

Subgrode k 100 pci., Subbase 
Combined k I30 pci., Lood Sofety Factor 1;7 (L.S.F.1 

PROCEDURE 

I. Fill in  Col. 1.2 ond 6, l ls t ing oxle loods in dscreosing order. 
2.Aorumo 1st t r io l  depth. Use 1/2-1n.lncrementc. 
3,Anoiyze is1 t r i o l  depth by completing columns 3,4,5 ond 7. 
4.Anolyze other t r io l  depths, voryinp M.R: slob depth ond  rubboae type?' 

Triot depth 9.5 in. M.R* 600 ps i  h 1 1 0 p c i  

SINGLE AXLES 

I 

All. 
L00ds 

hips 

2 

Axlo 
Loo68 

X L.S.F. 
hip8 

*I 
Cement-treated rubbases resul t  i n  greatly incteossd combined k uoluea. 

3 

Strear 

p s i  

I 
I 

I 

"** ro t01  fo$ioue rcb i r tonce used should no t  exceod obau i  125 percent. 

5 

Al lovoble 
Repetitions 

No. 

4 

Stress 
Ratios 

I 
I 

Total 75.1% * W.R. M o d ~ I u 8  of Ruptur. f o r  3 r d  pt, looding. 

6 

Expected 
R b p e t i t i o n ~  

NO. 

7 

Fotiaue 
Resistonce 
Used*** 
percent 



CALCULATION OF CONCRETE PAVEMENT THICKNESS 
(Use with Case1 Single 8 Tondsm Axle Design Charts) 

project Design Example - 1933 PCA 
Type NO. o f  Lanes 
Subgrad. h pcl., Subbaa. 
Combined k -pci., Load Safety Factor '" (L.S.F.) 

PROCEDURE 

I. Fill in  Col. 1.2 and 6. l i r t ing  axle loada in decreasing order. 
Z.Arrum. 1st (r ial dapth.Use 1/2-in.lncrementr. 
3.Anatyre 1st t r i a l  depth by compleling columns 3,4,5 and 7. 
4.Analyze othmr t r ia l  depth', varying M.R: slob depth and rubbas. typanf  

SINGLE AXLES 

TANDEM AXLES 

7 

Fatigue 
Reaistonca 
UredX** 

percent - 

Total 196.9% 
a M R Modulus Of Rupture for 3rd p t  loodung 
*a 

Cmment-treated aubbasar resul t  i n  praol ly  tncreased combtned k volues 

I** Total  f a t l gu r  rs r l s toncs  used rhou ld  n o t  exceed about 125 p e r c m t  

Trial d o p t h L i n .  M.R? 600 ps i  k 130 po i  

1 

Axle 
Loads 

hips 

6 

Expectad 
Repetit ions 

No. 

2 

Axlo 
Loads 

X L.S.F. 
hips 

4 

Stress 
Ratios 

3 

Stresr  

p s i  

5 

A l l o v o b l ~  
Repetition, 

NO. 



CALCULATION OF CONCRETE PAVEMENT THICKNESS 
(Use with Ca.01 Sinpla E Tandem Axle Design Charts) 

project Design Example - 2.82 Air 

TYPO - NO. of  Lanee 

Subgrade k pct., Subbase - 
Combinad L ~ p c l . ,  Load Sofety Factor 1L.S.F.l 

PROCEDURE 

I. Fill in  Cel. 1.2 and 6. l i r t ina  oxla loads in decr*aaino order. ~ . .  ~, 
2.Arsume Irt t r ia l  depth.Usr 1/2-ln.increrncnto. 
3.Analyze Is? t r i a l  depth by completing coiumns 3.4.11 ond 7. 
4.Analyre ofher t r io l  d*pths,varying M.R: slab d-pth and  subbore typegc  

SINGLE AXLES 

30 I 36.0 / 320 1 c.5n 1 m l i m i t e d  
28 1 33.6 1 300 1 
26 1 31.2 1 1 1 1 

t , I I 

I 

Axle 
Loads 

hips 

Total None * W.R. Modulus of Ruptur*  t o r  3 rd  pt. loading. 
*a 

Cement- t reated rubbases resul t  i n  araot ly  increased combined k values. 

*** Total  fatigue resistance used should no t  exceed obou i  1 2 5  percbnt. 

Trial depth 9.5 in. M.R? 700 ps i  k 0 pc i  

2 

Axle 
Load* 

X L.S.F. 
kips 

TANDEM ,AXLES 

3 

Strb.8 

p a i  

6 

Expected 
Repetitions 

NO. 

54 64.8 

7 

Fatigue 
Resistance 
UsedX** 
percent 

4 

Stroes 
Ratio8 

350 1 c .50 
340 1 
330 1 
320 
310 1 

52 
50 
48 
46 -- 

5 

Ailouobl. 
Repetitione 

No. 

Unl imi ted  
62.4 
60.0 
57.6 
55.2 



L 1 1 I I I I 1 
TANDEM AXLES 

CALCULATION OF CONCRETE PAVEMENT THICKNESS 
(Uas u i r n c o ~ o  l Single E Tandem Axle Design Chorts l  

P,ojact Design Example - 6.4% ~ i r  
T7p, No. o t  Loner 

Subgrade k L p c i . ,  Subbase 
Combinad h -pel.. Load Safety Factor LL.S.F.l 

PROCEDURE 

I. Fill in Col. 1.2 and 6, listing 0x1. toads in dacraasing ordsr. 
2.Assume 1st Vrial depth. Use I/2-in.increment@. 
3,Anolyre 1st t r ia l  depth by coinpl.ting columna 3.4,s ond 7, 
4.Anolytc other trio1 dopth*,varyinp M.R: slob dqpth and subbaam typen* 

Total 16.9% * M R .  Modulus o t  Rupture for 3rd pt. loading. 
*a Comsnt-treated subbar.. result in greatly incre0r.d combined h valu*s. 

*** Total fatigue resistance usad shouid not  exceed about l 26p* rc rn t .  

Trial depth 9.5 in. M . ~ ~ h n l , ~ s i  k 130 poi 

SINGLE AXLES 

6 

Erpsctad 
Rspetitions 

No. 

5 

Allowable 
R*p*titions 

NO. 

7 

Fotiaue 
RSsiStonCm 
Used "* 

percont 

4 

Strssr 
Ratios 

I 

Axla 
Loads 

kips 

2 

A i l *  
Loads 

X L.S.F. 
hips 

3 

Stress 

p s i  



CALCULATION OF CONCRETE PAVEMENT THiCKNESS 
(Us. with Case1 Single E Tondam Aair Design Charts) 

Project Design Example - 1 1 . ? x  &ii 

Type NO. or Lonro 
Subgrade k 100 pCi., S ~ b b 0 8 ~  
Combined k 130 pci., Lood Safety Factor 1.2 (L.S.F.1 

PROCEDURE 

I. Fill in Cot. 1,2 on6 6, l i r t inp 0x1s loads in decraosing ardor. 
2.Asrumr 1st t r io l  depth. Use 1/2-in.increment#. 
3.Anatyte let  t r i o l  depth by compleling columns 3,4,5 on4 7. 
4.Anoiyre other t r io l  dopth.,voryinp M.R: slob dopth ond rubbose typen" 

SINGLE AXLES 

Total 3322.6% * M. R. UoduIuw Of R ~ p t u f e  t o r  3 rd  pt. loading. 
*a 

Cement - t r ro tod *ubboi#* resul t  i n  graotly increotsd combined k values. 

*** Tot01 fat igue raai.tonce us04 should no? exceed about 126 percon*. 

I 

Aate 
Lood l  

kips 

Trioi d o p t h 9 . 5 i n .  M.R"O0 ps i  k 130 poi  

3 

Stress 

p s i  

2 

Axle 
Load8 

X L.S.F. 
kips 

4 

Stress 
RotiOs 

5 

~ i fowob l .  
Repstitions 

N o. 

6 

Expoctsd 
Ropetition. 

NO. 

7 

Fotipue 
Reriotonce 
Used ""* 
percent . 



CALCULATION OF CONCRETE PAVEMENT THICKNESS 
(Us. with Case1 Sinpia E Tandem Axle Dosign Charts) 

project Desien Exam~le - IP?? DCA 
ryp. No. o f  Loner 

Subprodr k A p c i . ,  Subbasa - 
Combined k 130 pci., Load Safrty FOCtor 1.2 (L.S.F.) 

PROCEDURE 

1. Fill in Col. 1.2 and 6, listing oxlr loads in dacreoaing order 
2.Asruma 1st t r io l  d*pth.Usr 1/2-in.incremeotr. 
3.Analyre 111 t r ia l  depth by completing columns 3.4,s and 7. 

I* 
4.Anotyae Other t r ia l  depth8,varying M.R: aiob depth and aubboa* type.  

SINGLE AXLES 

Total 52 .3% * H R M o d ~ l u s  a t  Rupture f o r  3 r d  pt  loodlng 
40 

Cement- t reoted subborer result in greatly increased comblnsd k valus8 

Oa* Total  fot tgue i e s ~ s l a n ~ e  used should no t  exceed about 126 percent 

7 

Fotiguo 
Resiatanco 
Usodg'* 
percent 

Trio1 depth 10.0 in. M.R?A~I~  k 130 pc i  

6 

Expacted 
Repetitions 

No. 

t 

Axle 
Loads 

kips - 

2 

Axle 
Loode 

X L.S.F. 
hip1 

3 

Stress 

p s i  

4 

Stress 
Ratio1 

5 

~ l l o w o b t e  
Rapetitions 

NO. 



CALCULATION OF CONCRETE PAVEMENT THICKNESS 
(Use with Cam1 Single 8 Tandem Axle Denion Charts) 
Project Desien Emrn~le - 2.8% Air 

TYPO No. of Lanes 

Subgrade k &pci, Subbass - 
Cornbinad k I3O pci., Load Safety Factor (L.S.F.) 

PROCEDURE 

I. Fill in Col. 1,2 and 6, listing axle loads in decreasinp ordrr. 
2.Assum8 1st trial drpth.Ure 1/2-ln,incrementr. 
a.Analyrs 1st t r ia l  depth by oampteting columns 3,4,5 on6 7. 
4.Analyze other trial depths, varying M.R: slab depth and subbase typen* 

SINGLE AXLES 

Total 124.8% * M.R. M O ~ U I U *  01 Rupture for 3rd pt, loading. 
*a 

Cement-treated subbos~e r r r u l t  i n  graatiy increased combined k valu.. . 
'*' Total fatigue resistance used whouid not saceed about I 2 5  percent. 

I 

Axle 
Load8 

kips 

Triol dopqh '.5 in. ~ . ~ ? 7 0 0 p s i  k 130 poi 

2 

Axle 
Loads 

x L.S.F. 
kip8 

7 

Fatigue 
Resistance 
~ s e 6 ~ ~ '  
percont 

3 

Strrrs 

ps i  

4 

Strers 
Ratios 

5 

Allouabl. 
 apet tit ion* 

No. 

6 

Expected 
Repetitions 

No. 



T o t a l  103.5% * M. R. Modulus of Rupture f o r  3 r d  pt, loading. 
*a 

Cement-treatod subbas01 resul t  in  greotiy increored comtiinod k value,. 

*** Total  fat igue resistance used should no t  saceod about 125 porcmt .  

CALCULATION OF CONCRETE PAVEMENT THICKNESS 
(Use with Case1 Single fi Tandem Axle Oeaign Charts) 

Project Design Example 6.4% A ~ X  
rYpe No. o f  Laner 

Subgmde k 100 pci., Subbosa 
Combined k -pci., Load Sohty  Factor 1.2 (L.S.F.1 

PROCEDURE 

I. Fill in Col. 1.2 ond 6, l ist ing axle loads in decreasing order. 
2.Arrum. let t r ia l  depth.Use 1/2-in.incrementr 
3.Analyz. let  t r ia l  dapth by cornplating coiumns 3.4.5 and 7. 
4.Anolyze other t r ia l  dopihe, varying M.R: slob depth and eubbae. typaRa 

i 

Aata 
Loads 

k ip1 

Trial depth 9.0 in. M.R? 600 ps i  k A p o i  

SINGLE AXLES 

7 

Fatigue 
Resistonce 
 cod'"" 
percent 

2 

Axla 
Loads 

X L.S.F. 
kips 

5 

Aliouabto 
Ropotitions 

NO. 

6 

~ x p o c t a d  
Ropetitions 

No. 

3 

Stroes 

p s i  

4 

Stress 
Ratios 



CALCULATION OF CONCRETE PAVEMENT THICKNESS 
(Us. vi lh Cars1 Sinplb E Tondem Axle Design Charts) 
Project Desinn - I P  11.3% Air 

TYP. NO. of ~anes  

Subgrade k 100 pcl., Subboee 
Combined k -pel., Load Safety Factor - 1.2 (L.S.F.) 

PROCEDURE 

1. Fill in Cat. 1.2 and 6, listing axle loads in drcrsasing or6sr. 
2.Arrumo lsf trial depth.U*e I/2-ln.1ncrements. 
3.Anotyre 1st tr ial  depth by camplrting columns 3,4,5 and 7. 
4.Anolyze other trial depth.,varying M.R: siob dqpth and aubbol. typenC 

SINGLE AXLES 

Total 114.7% 
M. R. MO~U~UI of Rupture for 3rd pl. loading. 

C* 
Cement- treated subbores rreult in greatly increased combined k volus$. 

'** Total fatigue resirlance u8ed should not exceed about 124 percent. 

7 

Fatigue 
Rrnietanc* 
U$sdx** 
percent 

Triol d.p$h lo.s in. ~.R"pp.i k pci 

6 

Exprcted 
Repetitions 

No. 

t 
Axle 

Loo68 

kips 

2 

Ax11 
Loode 

X L.S.F. 
kips 

3 

Stress 

ps i  

4 

Stress 
Ratios 

5 

Allovabls 
Rsprtitiono 

NO. 




