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EXECUTIVE SUMMARY 

Taking core samples of concrete pavement is an essential step in the quality assurance process, 
and the quality of the samples determines pay quantities for contractors. Due to limited budgets 
and reduced inspection staff, state departments of transportation (DOTs) are in need of 
innovative approaches for providing more efficient quality assurance on concrete paving 
projects. In Iowa, the current technique is to take core samples of the pavement every 2,000 
square yards. This labor-intensive process requires that the hole be patched. In addition, taking 
samples at this interval may not be thorough enough to catch all deficiencies. Payment methods 
for concrete paving contractors typically involve taking cores from the new roadway, averaging 
the lengths, and comparing this average to the design thickness. The unit price is then adjusted 
based on the results of these core samples. Pavement coring is expensive for state DOTs, and any 
approach that can eliminate this process will be beneficial. 

The goal of this research is to investigate and test new methods that can determine pavement 
thickness in real time. One method, which uses a laser to scan the surface of the base prior to 
paving and then to scan the surface after paving, can determine the thickness at any point. Also, 
scanning lasers provide thorough data coverage that can be used to calculate thickness variance 
accurately and identify any areas where the thickness is below tolerance. Other benefits from this 
technique include the ability to determine concrete yield quantities and possibly smoothness. 
Although the proposed scope of this project only included scanning lasers, the scope was 
extended to examine the ultrasonic and eddy current sensors. A literature review revealed that 
ultrasonic and eddy current sensors have the potential to measure thickness nondestructively at 
discrete points and may result in an easier method of obtaining thickness. 

The laser scanning methodology for this study involved the following: (1) investigating 
characteristics of the paving process, (2) using a laser scanner on three different sites (one 
involving an Iowa Special and two using a spreader with rebar and baskets, (3) processing the 
data to create clean surface models, (4) performing statistical analyses to determine thickness 
variability, and (5) summarizing the results. The ultrasound approach involved (1) establishing 
critical test parameters such as frequency, concrete mix design, and thickness; (2) performing 
laboratory tests; and (3) processing and analyzing the data. The electromagnetic test 
methodology was similar to that developed in using ultrasound. 

There appear to be two viable approaches for measuring concrete pavement thickness during the 
paving operation. Laser scanning has proved to be a reliable technique in terms of its ability to 
provide virtual core thickness with low variability. Research is still required to develop a 
prototype system that integrates point cloud data from two scanners. Coordinate control will be 
required and can be achieved using a total station approach or GPS for x-y control and the 
stringline for accurate elevation readings. Electromagnetics has also proved to be a suitable 
alternative. This technique is probably closer to field implementation than the laser scanning 
approach. As a next step for this research project, it is suggested that a pavement thickness 
measuring device using electromagnetics be created; this would involve both a handheld and 
paver-mounted version of the device. The concept behind electromagnetic scanning is to place 
metal plates on the base in a random fashion. A bank of sensors can be mounted on the back of 
the paver to measure concrete pavement thickness in real time. DOTs or other quality controlling 
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agencies would also be able to use a handheld version for performing quality assurance. This 
technique would allow the measurement of concrete pavement thickness as well as dowel bar 
placement and depth. Laser scanning is still the preferred method for determining both concrete 
thickness and dowel bar placement because it can provide accurate and continuous monitoring 
capabilities. The electromagnetic approach, in contrast, is discrete in nature. 
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INTRODUCTION 

Problem Statement 

Taking core samples of concrete pavement is an essential step in the quality assurance process, 
and the quality of the samples determines pay quantities for contractors. Due to limited budgets 
and reduced inspection staff, state departments of transportation (DOTs) are in need of 
innovative approaches for providing more efficient quality assurance on concrete paving 
projects. In Iowa, the current technique is to take core samples of the pavement every 2,000 
square yards. This is a labor-intensive process and requires that the hole be patched. In addition, 
taking samples at this interval may not be thorough enough to catch all deficiencies. Payment 
methods for concrete paving contractors typically involve taking cores from the new roadway, 
averaging the lengths, and comparing this average to the design thickness. The unit price is then 
adjusted based on the results of these core samples. Pavement coring is expensive for state 
DOTs, and any approach that can eliminate this process will be beneficial. 

The goal of this research is to investigate and test new methods that can determine the thickness 
of the pavement in real time. By using a laser to scan the surface of the base prior to paving and 
then to scan the surface after paving, the thickness at any point can be determined. Also, 
scanning lasers would provide thorough data coverage that can be used to calculate thickness 
variance accurately and identify any areas where the thickness is below tolerance. Other benefits 
from this technique involve the ability to determine concrete yield quantities and possibly 
smoothness. Although the proposed scope of this project only included scanning lasers, the 
scope was extended to examine the ultrasonic and eddy current sensors. Ultrasonic and eddy 
current sensors have the potential to measure thickness nondestructively at discrete points and 
could result in an easier method for obtaining thickness. 

Project Objectives 

The principal objective of the research is to develop the algorithms that can process real-time 
laser scanning data to create an accurate 3D model of the pavement that can then be used to 
determine pavement thickness at any point. Such a device will eliminate the need for state DOTs 
to take cores in order to assess this aspect of quality. This device can also be considered for in-
process control of the paver, since real-time concrete depths will be calculated. This real-time 
method may eliminate the need for the owner and contractor to take depth measurements during 
the paving process. 
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VISION OF THE PROPOSED SYSTEM 

Figure 1 shows a possible setup for the implementation of a laser scanning system. The current 
vision consists of two 2D scanning lasers, with one mounted on the front to measure subgrade 
profile and the other mounted on the back to measure pavement surface profile. The rear 
scanning laser may not be necessary if the Ames Engineering (which involves lasers) or the 
GOMACO (which uses ultrasound) concrete pavement smoothness techniques can provide the 
necessary profile of the paved surface. 

Coordinate control can be accomplished through the total station tracking of prisms mounted on 
the paver and through paver slope measurement, similar to the system that GOMACO currently 
uses in its stringless control system for slipform pavers (Alta Ingenieria 2000; Gomaco 2004). 

 

 
Figure 1. Anticipated vision of laser scanning concrete thickness profiler 

A schematic view of the laser scanning concrete thickness profiler is shown in Figure 2. The 
coordinate control system consists of two tracking total stations that each track one prism 
mounted on the paver. The tracking total stations send coordinate data to a computer mounted on 
the paver. Using the data from the total stations and slope readings from a paver-mounted tilt 
sensor, the coordinates of the paver are determined in three dimensions. Scanning lasers 
mounted on the front and back of the paver constantly scan the surface of the subgrade and the 
installed pavement. An accelerometer mounted on the lasers record vibrations to be used to 
correct vibration-induced errors in the scanned profile. 
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Figure 2. Schematic view of setup for laser paver application using tracking total stations 

The setup of Figure 1 is ideal when coordinate control already exists on the paver, such as that 
required for stringless paving applications. For instance, the stringless control system developed 
by GOMACO uses three Leica Geosystems tracking total stations, which cost approximately 
$35,000 each. An alternative setup is shown in Figure 3, where velocity and direction are tracked 
by an onboard system. By tracking the speed of each of the paver tracks, the compass 
orientation, and the slope of the paver, it may be possible to relatively align the forward and rear 
laser scans. Other methods to aid in obtaining position include attaching laser reflectors to grade 
control stakes and GPS signals enabled with a wide area augmentation system (WAAS). 
Although such a system would not be accurate enough to support stringless paving, such a 
system may allow sufficient precision to determine pavement thickness. Determining pavement 
thickness requires that the rear scan of the pavement surface be overlaid with the corresponding 
scan of the subbase from the forward laser. 
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Figure 3. Schematic view of setup for laser paver application using an onboard relative 
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LITERATURE REVIEW 

NDE Methods Used to Spot Check Pavement Thickness 

Impact echo methods have been used to determine pavement thickness with some success (Civil 
Engineering 1994; Public Works 1995). The technique requires sophisticated neural networks to 
identify the reflection of the impact signal from the bottom surface of the pavement. High-
frequency ultrasound has also been evaluated for its use in measuring pavement thickness. By 
using a process known as split spectrum processing, ultrasonic techniques have been successful 
in measuring the thickness of stainless steel and other materials. Although encouraging results 
have been obtained for concrete testing, further work is needed because concrete produces more 
scattering than a homogenous material such as steel (Popovics, Bilgutay, and Karaoguz 2000). 

The shadow moiré (Guralnick, Suen, and Smith 1993) method projects lines of light onto the test 
surface by projecting light through a grate. A camera records the pattern of lines projected onto 
the test surface. By analyzing the distortion of the lines, the surface profile can be determined. 
Although this technique has shown promise as a quick and cost-effective method for acquiring 
3D images, the method is not well-suited for the real-time monitoring of paving because of the 
difficulty of projecting light onto the surface in the presence of full sunlight. There will also be 
many obstructions, such as rebars, people, and concrete trucks that produce variations in the 
environment. 

Ground penetrating radar has been used to detect voids and locate rebars in concrete and may 
hold promise for determining pavement thickness, but this method needs further development to 
produce automated data evaluation (Maierhofer 2003). The additional factor of wet concrete may 
also contribute to variability in the results. 

Stereo vision can be used to capture 3D data by using two cameras. Some difficulties, however, 
include low visibility caused by dust, fog, and poor lighting. Radar is a well-developed 
technology that can measure distance, but it is typically not used in these types of applications 
due to the potentially harmful effects of radar on people. 

One widely used method for measuring the distance of objects is called laser range finder or 
LIDAR (light detection and ranging) (Wozencraft and Millar 2005). In order to calculate the 
distance between the laser device and an object, a laser pulse is sent toward the objects, and the 
device determines the length of time before the laser returns to the camera. The accuracy of 
LIDAR depends on the laser pulse and the laser device. 

Lasers have long been used to measure distance. Some examples include airborne scanning 
lasers for terrain mapping (Cutelius 1998), 3D scanning lasers for recording as-built construction 
details (Sawyer 2002), and 3D imaging on a very large excavator (Roberts, Winstanley, and 
Corke 2003). Figure 4 shows the drag line used in a test by Roberts, Winstanley, and Corke 
(2003), and Figure 5 shows a laser-generated 3D digital terrain map (DTM) relative to the drag 
line. This project presented many challenges for the researchers: the laser scanner needed to see 
through rain and dust, the bucket and its associated ropes and chains were swinging beneath the 
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laser and could obscure the laser scanner’s view, and the DTMs had to be computed in real time. 
A laser scanning system was chosen because it addressed these issues better than other available 
solutions. By combining position data from the dragline with the laser-scanned data, the 
researchers were able to establish the Cartesian position of each scanned point in real time. 

RIEGL Laser Measurement Systems (2004) has developed a high-speed 2D laser scanning 
system (LMS-Q250i) that has been used for profiling railroad tunnels. The range is up to 15 
meters with a 5 mm measurement resolution (Figure 6). 

 
Figure 4. A Bucyrus-Erie 1350 dragline (Roberts, Winstanley, and Corke 2003) 

 
Figure 5. A laser generated digital terrain map and dragline (Roberts, Winstanley, and 

Corke 2003) 
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Figure 6. Riegl 2D laser scanner LMS-Q20i (RIEGL 2004) 

Another challenge for this nondestructive evaluation (NDE) tool is the ability to capture 
coordinate data within acceptable tolerances for a concrete paver. One approach is to use 
tracking total stations, such as the system developed by Leica Geosystems and GOMACO 
(GOMACO 2004). Another system developed by CMI Terex and Geologic Computer Systems 
uses a combination of GPS and laser for coordinate controls (Cable and Jaselskis 2004). Both of 
these systems have shown that coordinate control for slipform pavers is possible. 

NDE Methods Used to Determine Pavement Smoothness 

The conventional approach to determining concrete pavement smoothness involves the use of a 
profilometer to determine a smoothness index for the pavement (Grogg and Smith 2001). 
Advancements in the use of lasers and ultrasonic techniques have been and are currently being 
developed. For example, Ames Engineering, Inc., is using laser beams fired in close proximity to 
the concrete pavement in order to develop a smoothness profile (see Figure 7, from 
http://www.acuityresearch.com/products/ ar600/ common-applications-road-profiling.shtml). An 
algorithm is used to account for scattering caused by the grooves in the pavement. GOMACO 
also claims to be able to create a smoothness profile using ultrasound. 
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Figure 7. Ames Engineering, Inc., road profiling laser to test smoothness 
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METHODOLOGY 

The methodology for the present research involved investigating three NDE approaches for 
determining concrete pavement thickness. The initial scope of this project was to investigate 
only the use of laser scanning, but upon the recommendation of the technical committee the 
scope was expanded to include ultrasound and electromagnetics. Appropriate tests were then 
established for each of the techniques. Laser scanning involved extensive field testing on actual 
paving projects during the summer of 2005. In contrast, the ultrasonic and electromagnetic tests 
were performed in a laboratory. The overall purpose of this initial research phase was to identify 
the most suitable NDE technologies for measuring concrete pavement thickness and then to 
establish a plan for implementation. 
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LASER SCANNING 

Field Trip Preparation 

After reviewing the literature, the research team visited four paving projects to observe the 
process, consider equipment mounting options, and develop a plan for taking laser scans. 
Information about these projects is listed below. 
 
First Project: 18 May 2005 

Date: 18 May 2005 
Place: Fort Dodge, Webster County, Iowa 
Weather: 60°F, windy 
Pavement Type: Concrete (see Figure 8 for an image of the project’s paving train) 
Contractor: Fred Carlson  
Contact Person: Dennis Klocke 
  

 
Figure 8. Illustrated paving train image of Fred Carlson 

Second Project: 14 June 2005 

Date: 14 June 2005, 11 a.m. 
Place: IA-60 in Hospers, Sioux County, Iowa 
Weather: Cold and raining; the plant was shut down and no paving occurred 
Pavement Type: Concrete 
Contractor: Cedar Valley Corp. 
Contact Person: Craig Hughes, project manager, (319) 290-5617 
 
Memo  
The paving plant had shut down before the research team arrived due to predictions of heavy 
rain. However, the team visited the plant to see the concrete machines and talk to the project 
manager. Cedar Valley Corp. uses a Guntert & Zimmerman concrete spreader and concrete 
slipform paver, as well as a GOMACO texture/cure machine (see Figure 9, from right to left). 
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The research team learned that (1) the pavers already have vibration sensors that might be 
useable in the new concrete thickness profiling method, (2) the paver will insert dowel bars 
during the paving process in the middle of the road, and (3) subbase elevations vary up to half an 
inch. 
 

 
Figure 9. Paving train from Cedar Valley Corp. on IA-60 project 

Third Project: 14 June 2005 

Date: 14 June 2005, 12 p.m. 
Place: IA-60 in Alten, Sioux County, Iowa 
Weather: Cold and scattered rain 
Pavement Type: Concrete 
Contractor: Irving F. Jensen Co. 
Contact Person: Terry Hamer 
 
Memo  
The paving crew was operating while the research team was present, despite scattered rain. 
Researchers met the Iowa DOT officer and talked about the project. During the project, concrete 
trucks were unloading concrete about every one minute. 

Irving F. Jensen Co. uses a GOMACO concrete spreader, CMI concrete slipform paver, and a 
Guntert & Zimmerman texture/cure machine. The research team learned that (1) Jensen Co. uses 
a V-float at the back of the paver to smooth the concrete, which may obstruct the laser beam (see 
Figure 10); (2) the workers use bull floats near the rear of the V-float. 
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Figure 10. Jensen Co. paver with the V-float 

Fourth Project: 22 June 2005 

Date: 22 June 2005, 1 p.m. 
Place: G-61 (county road) in Macksburg, Madison County, Iowa 
Weather: Hot and dusty, around 90°F 
Pavement Type: Iowa Special  
Contractor: Fred Carlson 
Contact Person: Mark Williams, County Engineer 
  
Memo  
Fred Carlson was using a CMI autograder (Iowa Special), a RexCon concrete slipform paver, 
and a Guntert & Zimmerman texture/cure machine (see Figure 11, from left to right). The 
researchers also learned the following:  

• The CMI autograder does a final grade trim, so subbase scanning will have to be done 
between the Iowa Special and the paver. 

• Concrete is dumped from the front of the paving train onto a belt placer that is part of the 
CMI Autograder, transported over the top of the CMI Autograder, and placed in the rear. 

• Rebar baskets are placed by workers behind the CMI Autograder in front of the concrete. 
• There were no shoulders on either side of the road. 
• The combination of crushed concrete as a subbase and the final trim from the autograder 

produced a lot of dust, which may be detected by the laser. 
 

 
Figure 11. Paving train from Fred Carlson on G-61 
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Thickness Data Collection Procedure 

Using knowledge gained during the field visits, the research team then developed a plan to use a 
commercially available, survey-grade scanning laser to capture thickness data from actual paving 
projects. A laser scanner was rented for a one-week period and was used to capture data from the 
following three projects. 

First Project 

Date:  11 July 2005 
Place: South of Hospers, Iowa, IA-60, northbound lane 
Station ID: 204+90 
GPS Coordinates: N43.03.4818/W095.54.7183 
Weather: Hot and sunny 
Pavement Type: Concrete 
Contractor: Cedar Valley Corp. 
Contact Person: Craig Hughes 
 

 
Figure 12. Aerial photo near project site near Hospers, Iowa 

Second Project 

Date:  11 July 2005 
Place: Near Seney, Iowa, IA-60 
Station ID: 53+90 
GPS Coordinates: N42.50.8846/W096.08.4483 
Weather: Hot and sunny 
Pavement Type: Concrete 
Contractor: Irving F. Jensen Co. 
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Figure 13. Aerial photo near project site near Seney, Iowa 

Third Project 

Date: 13 July 2005, 10am 
Place: US 30, West of Tama, Tama County, Iowa 
Weather: Hot and dry, 90°F 
Pavement Type: Concrete 
Contractor: Fred Carlson 
 

 
Figure 14. Aerial photo near project site near Tama, Iowa 
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The research team used an HDS3000 Leica Geosystems scanning laser to measure the thickness 
with three scans: (1) the subbase scan, (2) the concrete scan between the paver and the curing 
cart, and (3) the concrete scan after the curing cart (see Figure 15).  

 
Figure 15. Performing laser scan on the subbase level 

Researchers recorded the Earth coordinates of a laser scan target using GPS (see Figure 16) to 
identify the location of the scan.  

 
Figure 16. Using GPS on the target 

Setting up the laser scanner took about 25 minutes before the first scan, including finding a 
suitable location, setting the tripod, opening the laser scanner, opening the software, and imaging 
the surrounding area. Each scan took about 5–15 minutes, depending on the scanning resolution. 
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Moreover, an additional scan was made for the texture at the Tama location. The research team 
scanned a one-by-one-foot area of the concrete surface at high resolution, the 1000-by-1000-
point resolution, to experiment with the surface sampling. 

 
Figure 17. Concrete texture detail at the Tama project 

At the end of the day, the research team collected additional scan data by scanning the Marston 
water tower (168 feet tall), Beardshear Hall (high motif detail), and Howe Hall (a glass building) 
on the Iowa State University campus. It was discovered that the laser scan did not capture the 
glass material. The laser went through the glass and detected the wall inside Howe Hall. 

Data Collection Results from the Construction Projects 

The data from the construction sites were reviewed using Cyclone, a software tool provided by 
Leica Geosystems to process the point cloud. The software is useful for viewing, measuring, and 
filtering the data. Some major functions are listed below: 

• Distance measuring, which measures the distance between two or more point clouds by 
selected points. 

• Point cloud unification, which reduces the density of the point clouds from the original 
files. This reduces the file size and number of point clouds for easy later use.  

• Smooth surface region growing, which separates point clouds into different pieces 
defined by the positions and closeness measurements of the point clouds. The system 
divides different point clouds with different similarities by parameters the user sets. After 
this function processing, major noise sources, such as people walking in front of the 
scanner, can be easily removed.  

• Cross-sectioning, which automatically generates cross-section views of the whole 
roadway along polylines or curves. The sections are created following the parameters the 
user has set, as shown in Figure 18. This cross section can be compared to the actual 
design, such as the design shown in Figure 19. 

• Triangular irregular network (TIN), which creates a TIN surface from the point clouds by 
selecting point cloud(s). A TIN surface can be used for generating, for instance, the 
shortest distance between TINs or the volume between two TINs. Figure 20 shows two 
TIN surfaces created from the real concrete pavement (top) and subbase (bottom). Data 
from two TIN surfaces are generated to find the thickness of concrete (differentiating 
between the upper TIN and lower TIN), as shown in Figure 21 with Microsoft Excel.  
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Figure 18. Cross section generated from the Cyclone software 

 

 
Figure 19. Cross section from the drawing 

 
 

 
Figure 20. TIN of concrete surface and subbase surface 
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Figure 21. Data of XYZ positions of TIN data 

The laser scan data can be used directly in Leica Geosystem’s Cyclone software or exported to 
other software. With the features found in Cyclone, point clouds can be exported to other 
programs for further analysis. However, analysis can be difficult because the data set may be 
very large. To reduce the file size, point clouds can be either selected in smaller pieces or unified 
and exported separately. 

Other Examples Using Laser Scanning 

The research team used the laser scanner on the Iowa State University campus to gather data 
from different objects, such as the Marston water tower, Howe Hall, Hoover Hall, and 
Beardshear Hall. Figure 22 shows the scan of the Marston water tower, Howe Hall, and Hoover 
Hall. According to the laser scan data, the tower height is 164 feet 9 inches from the base; 
according to data published on the Iowa State University Daily website, the height is 168 feet. 

 
Figure 22. Example scan finding height of the tower 
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A high-resolution scan was also performed of the top motif on the front of Beardshear Hall. 
Although the scanner was 135 feet away from the object, the scanner was able to capture point 
data at a 0.5 x0.5 inch grid (see Figure 23). However, it was found that the laser beam cannot 
detect an object that is transparent and highly reflective, such as a mirror or a chrome bar. 

 
Figure 23. Example high-resolution scan  

Observed Features of Thickness Data 

Figure 24 illustrates laser scan data for the pavement and subbase sections of IA-60 in Hospers, 
Iowa (contractor Cedar Valley Systems). The data was gathered with the Leica Geosystems 
HDS3000 laser scanner and viewed through the Cyclone software. The point cloud view shows 
the raw data points directly from the laser scanner without any filtering or noise removal. The 
data is viewed horizontally along the direction of paving. The upper line in the point cloud 
section is the pavement and the lower line is the subbase. The subbase line is slightly thicker and 
fuzzier, which is expected, as the aggregate surface of the subbase is not as smooth or finely 
graded as the pavement surface. It can be noted that, from this view, the pavement and subbase 
do not vary significantly along the axis of paving. This observation will be useful for developing 
data filtering and prediction algorithms that can be used at different sites without customization. 
TIN models were then created from the point cloud by connecting each adjacent point cloud.  

Measuring thickness directly from point cloud data is difficult because it is highly unlikely that 
the laser will capture data along the same Z axis for both the subbase and pavement. Therefore, 
data interpolation and prediction are necessary. The TIN mesh helps because the TIN is a surface 
and the Cyclone software can measure the distance between the two TINs along user-defined 
grid spacing. The thickness shown in the figure was estimated this way. The thickness is shown 
again with the vertical scale enhanced to magnify the data trends. The thickness varies across the 
road more than along the axis of paving. The pavement thickness increases by about 10mm from 
the left to the right, with a slight peak in the middle of the road. 
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Figure 24. Thickness data from Hospers, Iowa 

The data for Seney and Tama also show a variance of about 10mm for the thickness along the 
lateral axis of the road (Figures 25 and 26). There is also a slight bulge of about 5mm on the 
right side of the road that causes a slight dip in pavement thickness. As seen from these figures, 
there is significant variance in the pavement thickness, and the main source of the variance is the 
subbase. 
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Figure 25. Thickness data from Seney, Iowa 

 
Figure 26. Thickness data from Tama, Iowa 
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Algorithms for Data Processing 

Scanning lasers are very useful for collecting a large amount of data very quickly. However, the 
amount of data can produce some challenges for data processing. For instance, a single surface 
scan, such as the one in Figure 27, contains over 100,000 data points, with each having an X, Y, 
and Z axis coordinate. 
 

 
Figure 27. Unprocessed surface scan with over 100,000 data points 

Clustering 

The first step in processing was to choose a one-meter section of road. This was done to reduce 
the data set size to about 4,000 points, which can easily be processed by a computer with a 2.8 
GHz Pentium 4  processor. This data set is shown in Figure 28. The surface is easy to identify, 
with a smooth, flat surface. Another feature noted in the figure is one of the edges. The scanning 
laser was stationed to the right of the image and could not see the other edge. Some background 
noise was also detected on the other side of the pavement. 

 

Figure 28. A one-meter-long section of the pavement 

String 
Line 

Surface

Edge

Background 
Noise 
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The string lines and the background noise are easy to remove through clustering. This concept is 
best explained through an example. Figure 29 shows a set of 10 data points. If a point, such as 
x9, is identified as a starting point for a cluster, then the points within that cluster can be 
identified by comparing the Euclidean distance between x9 and all other points. In this case, x5, 
x7, x8, and x10 are much closer to x9 than the other points, so a cluster is created containing 
these 5 points. In the application of laser scans of pavement, the distance between points on the 
pavement is known to be within a certain range, both horizontally and vertically. This a priori 
knowledge can be used to set the cluster threshold. Using this type of algorithm, Figure 28 was 
processed to produce Figure 30. Figure 30 shows the laser scan without string lines and 
background noise. This type of processing also removes the noise caused by a worker passing by 
in front of the scanning laser. 

 

Figure 29. Example of 2D clustering (Tou and Gonzales 1974) 
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Figure 30. A one-meter-long section of pavement after noise removal 

Feature Identification 

Once the noise has been removed through clustering, the next step is to identify the edges of the 
pavement. One challenge of finding the edge of the pavement is that the laser often does not scan 
the edge. The dots in Figure 31 represent the laser scan across the pavement. As the laser scans 
across the surface, points are recorded at a fixed angular displacement. If, for instance, that 
angular displacement results in a distance (represented by d1 in the figure) of two inches 
between laser samples at the edge of the pavement, the point closest to the edge could be up to 2 
inches away from the pavement. The next laser shot will be off the edge of the pavement and at a 
noticeably large distance away (that is, d2 will be much larger than d1). Also, the elevation of 
the point off the edge will be noticeably lower. The difference in the distances d1 and d2, as well 
as the drop in elevation, can be used to detect that the laser has encountered the edge of the 
pavement, and the value of d1, which would be known, would represent the maximum error of 
edge detection. For this reason, d1 needs to be constrained to meet the desired accuracy. The 
error introduced by this error will impact estimates of pavement width and yield quantities. If 
only thickness is desired, then the value of d1 is not critical. 

Surface

Edge
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Figure 31. Detecting the pavement edge 

 
Figure 32 shows the result of edge detection. Once the edges are located, all data outside of this 
range are removed. The key features for data processing efficiency identify the right and left 
edges as well as the crown. The crown of the road is also identified by looking for the change in 
grade slope. 

 

Figure 32. A one-meter-long section of pavement after edge identification 

Subbase Processing 

The subbase, shown in Figure 33, was selected by taking all points from the subbase scan that lie 
underneath the pavement section identified in Figure 32. Noise was removed from the subbase 
by using clustering analysis. 

d1 d2 
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Figure 33. Subbase data set aligned with identified pavement 

Virtual Core 

Thickness can be estimated from this data by taking a virtual core. The user sets the core 
diameter, and a vertical core is then “drilled.” An average is taken of the points on the surface 
and subbase, respectively, and then the distance is calculated between the two surfaces. For this 
example, the thickness was 0.255 meters for a road with a design thickness of 0.260 meters. A 
more rigorous approach using appropriate statistical techniques is described in the next section. 

 
Figure 34. Virtual core 

Data Processing Results 

As demonstrated in the preceding sections, laser data can be processed automatically. 
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Ordinary Kriging Method of Data Interpolation 

There is a challenge in measuring the thickness of the pavement from the laser scan point clouds. 
Ideally, the thickness would be measured by calculating the distance between a point in the 
surface scan point cloud and a point from the subbase point cloud that lies in the same Z axis. In 
reality, the odds of the two scans aligning in this fashion is highly unlikely. For this reason, data 
interpolation is needed to estimate surface and subbase points that lie in the same Z axis. This 
problem was solved by using a spatial statistical tool called ordinary kriging. In ordinary kriging, 
the spatial relationship of the data is analyzed and modeled. Finding spatial models is not always 
possible; however, these models were determined for each of the three sample projects. The 
following sections describe the process of developing the ordinary kriging models. Using the 
ordinary kriging models, 2,000 thickness values were generated for each of the three projects. 
These data sets were used to quantify the confidence intervals between the measured thickness 
data and the model of the road, which is an estimate of the accuracy of the laser system. Also, 
the effect of sampling density on accuracy was measured. A summary of the kriging analysis is 
presented here. Refer to the appendix for a more thorough analysis. 

Ordinary Kriging 

To predict the depth of the pavement, ordinary kriging was employed. The steps of ordinary 
kriging include first calculating the empirical variogram. To calculate the empirical variogram, 
the distance between two points is calculated for all possible pairs of points. The distance 
between two points is then used to place each pair of points into a bin with other pairs that are 
separated by a similar distance. Suppose that there are m bins, such that hn represents the nth bin. 
An estimate of the variability of the difference between the z-coordinate for each pair of points 
in a bin is calculated using the method-of-moments estimator, which is given as 
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Where )( nhN  represents all pairs of points in the nth bin, 

|)(| nhN  represents the number of pairs of points in the nth bin, and 
)( ksZ  represents the z-coordinate at location sk for k = i , j. 

 
The empirical variogram is then a plot of the estimate of variability as calculated by Equation 1, 
represented as )(ˆ2 nhγ  versus the midpoint of the bin range. If )(ˆ nhγ  is plotted instead of )(ˆ2 nhγ , 
then the variogram is called a semi-variogram. 

A theorectical variogram is then fitted to the empirical variogram. The goal is to fit a theoretical 
variogram that has a shape very similar to that of the empirical variogram. There are several 
theoretical variograms, such as linear, power, and wave, but two theoretical variograms in 
particular were similar in shape to the empirical variograms for all the pavement and subbase 
data sets: the spherical and exponential variograms. The spherical semi-variogram is represented 
by the following equation: 
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Where 0c  is interpreted as the nugget, sc is the partial sill, and sa is the range. 

Similarly, the exponential semi-variogram is as follows: 
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Where 0c  is interpreted as the nugget, ec is the partial sill, and ea is the effective range. 

Both spherical and exponential variograms were fitted to the empirical variogram for all data 
sets. Futhermore, a weighted least squares criterion was calculated for each variogram: 
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The variogram with the lowest weighted least squares criterion was chosen. 

Ordinary kriging then uses the chosen theoretical variogram to predict the z-coordinate at a new 
location by taking a linear combination of the existing observations with weights that are based 
on the theoretical variogram. 

Analysis of the Hospers, Iowa, Data Set 

The first data set analyzed was the data from Hospers, Iowa. To aid in the statistical analysis, a 
clean section of raw data was selected from the point clouds. The selected area is from a section 
between two dowel baskets lengthwise and between the pavement edges widthwise. The area 
was chosen to be large as possible without including the features of the dowel baskets and the 
pavement edges. Since the scan of this area was clear of artifacts such as pedestrian and vehicle 
traffic, no filtering or cleaning of the data was necessary. 
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Hospers Pavement Point Cloud 

The result is a data set of 5,905 observations that can be used for statistical analysis. Figure 35 
contains the contour plot of the pavement data set on the left and the perspective plot on the 
right. The x- and y-coordinates are measured in meters, while the z-coordinate is measured in 
millimeters. The perspective plot shows that the pavement increases in height from left to right 
in the x-direction and the crown that is present in the pavement, which creates an inverted V 
pattern in the pavement along the y-direction. The plot also shows that one side of the pavement 
has a greater slope than the other side. Since these trends in the pavement were intentionally 
created by the paver and prediction is the main goal of the analysis, trends will be removed by 
fitting a linear model. Then, ordinary kriging will be performed using the residuals that result 
from fitting the linear model. In order to fit a model to the inverted V pattern, the data was 
rotated so that the ridge in the pavement was located along the x-axis. Then the inverted V 
pattern could be modeled using the absolute value of the y-coordinate as an explanatory variable. 

 
Figure 35. Contour plot and perspective plot of the pavement data 

From the trends observed in the perspective plot in Figure 35, the following model was selected: 

1432010 YYXYZ βββββ ++++=        (5) 
 

Where 
⎩
⎨
⎧

<
≥

=
0,0
0,1

0 Yif
Yif

Y .  

 



 30

Table 1. Parameter estimates for Model 2 

Parameters Estimates 
0β  -949.273 

1β  2.038 

2β  12.259 
3β  -8.405 

4β  -14.101 
 

For a detailed analysis of the process of developing this model, review the description of the 
kriging analysis in the appendix.  

Figure 36 shows the empirical semi-variogram for the residuals for three different types of 
directional analysis. Starting from the left, the first plot shows the omnidirectional semi-
variogram. The omnidirectional analysis gives equal weight to all points in the x and y 
directions. This semi-variogram does not fit well to any known model. The next plot shows the 
directional semi-variogram with emphasis given to points in the transverse direction, which is a 
line drawn across the road. Again, this semi-variogram does not fit any known model. The final 
plot is a directional variogram for the longitudinal direction, which is a line drawn along an axis 
in the direction of the paver. Fortunately, this semi-variogram does fit both the spherical and 
exponential semi-variogram. That the longitudinal direction produces a more predictable model 
is not surprising, as initial data analysis indicated that the variance of data is smaller when 
viewed in the axis of the direction of the paver. When the data is viewed transversely, the 
variance of the data is greater, and the model of the variance is difficult, if not impossible, to 
predict. 

 
Figure 36. Empirical semi-variogram of the residuals: omnidirectional, transverse, and 

longitudinal 

According to the weighted least squares criterion and Figure 37, the spherical variogram fits the 
empirical variogram better than the exponential variogram. Next, ordinary kriging was 
performed using the spherical variogram and another random sample of 2,000 residuals. By 
choosing another 2,000 residuals from the remaining 3,905 residuals that were not chosen for the 
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calculation of the empirical variogram, one can assess how well ordinary kriging can predict the 
height of the pavement by comparing the predicted height to the observed height at locations that 
were not used to estimate the parameters of the model. The second random sample consisting of 
2,000 residuals and their respective locations will be called the validation data set. Predictions 
and prediction squared errors for the validation data set are shown graphically in the image and 
contour plots in Figure 38. The squared errors are slightly larger in the lower left corner of the 
contour plot than in the upper right corner, which is a result of the pavement data being denser in 
the lower left corner than in the upper right corner. The impact of the number of observations on 
the squared errors will be examined in more detail in a later section. 

 
Figure 37. Fitted theoretical semi-variograms 

 
Figure 38. Contour and image plots of predictions for residuals (left) and predictions for 

pavement height (right) 



 32

Confidence intervals based on a significance level of 0.05 were then calculated for each location 
in the validation data set. The predicted height of the pavement consists of the sum of the 
predicted height and the corresponding predicted residual from the kriging analysis for each 
location. The 95% confidence intervals were then calculated as follows: 
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Where ),( ip sZp  is the prediction of height at location, is ,  

and )(2
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p
σ is the squared error at location, is . 

 
The coverage probability, which is the percentage of confidence intervals that capture the actual 
observation, is 96.6%. The median of the confidence intervals is 2.45 mm. Moreover, the 
theoretical prediction mean squared error, which is the mean of the squared errors from the 
kriging analysis, is 0.402. The empirical prediction mean squared error is 0.437 and is calculated 
by the following: 
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Since random samples were used for the analysis, the steps described in this section, beginning 
with generating a random sample of 2,000 observations to create the empirical variogram, were 
repeated 25 times to better understand the values that could be expected for the coverage 
probability and the median width of a confidence interval. However, only a spherical variogram 
was fitted to the empirical variogram for every random sample and used for prediction. There is 
a possibility that, in some cases, an exponential variogram may have been a slightly better 
choice. In addition, since the process was repeated only 25 times, the following summary should 
be treated as a descriptive statement, not an inferential statement. For the 25 repetitions, the 
minimum and maximum values for the coverage probability were 94.8% and 97.3%, 
respectively, and the minimum and maximum values for the median width were 2.08 mm and 
2.83 mm, respectively. 

Hospers Subbase Point Cloud 

The subbase data set, which contains 7,698 observations, was rotated and analyzed in the same 
manner as the pavement data set. As expected, the trends that were discovered in the pavement 
data can be seen in the subbase data, as shown in Figure 39. However, the trends are less 
pronounced because the subbase material does not create a surface that is as smooth as the 
pavement surface. 
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Figure 39. Contour plot and perspective plot of the subbase data set 

Since the model in Equation 1 was used to model the trends in the pavement data set, this model 
will also be used to model the trends in the subbase data set. The ordinary least squares estimates 
can be found in Table 2, and the contour plot and perspective plot of the residuals can be found 
in Figure 40. 

Table 2. Parameter estimates for Model 2 

Parameters Estimates 
0β  -1201.123 

1β  -7.097 
2β  12.280 
3β  -13.254 

4β  -7.390 
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Figure 40. Contour plot and perspective plot of residuals (mm) for subbase 

As with the pavement data, the empirical semi-variograms were computed omnidirectionally, 
transversely, and longitudinally. Again, the longitudinal directional analysis produced the best fit 
with known models for a semi-variogram. 

 
Figure 41. Empirical semi-variogram of the residuals: omnidirectional, transverse, and 

longitudinal 

The best fit for the empirical semi-variogram is the exponential theoretical semi-variogram up to 
four meters (see Figure 42). For this reason, only data within four meters of the prediction 
location will be used for estimating subbase elevations. 
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Figure 42. Fitted theoretical semi-variograms 

Again, a random sample of 2,000 observations was selected from the remaining observations that 
were not used to calculate the empirical variogram. Next, ordinary kriging was performed using 
the exponential variogram. Once predictions were obtained, the 95% confidence intervals were 
calculated for each location in the validation data set. The coverage probability is 95.9%, while 
the median of the width of the confidence intervals is 6.98 mm. The theoretical prediction mean 
squared error is 3.230, while the empirical prediction mean squared error is 2.870. The median 
width of the confidence intervals for the subbase is larger due to the uneven nature of the 
subbase when compared to pavement. The contour and image plot of the predictions and squared 
errors can be seen in Figure 43. 

 
Figure 43. Contour and image plots of predictions of residuals (left) and predictions of 

subbase height (right) 

As with the pavement data, the above process was repeated 25 times, beginning with generating 
a sample of 2,000 observations to create the empirical variogram. However, only an exponential 
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variogram was fitted to the empirical variogram for every random sample and used for 
prediction. There is a possibility that a spherical variogram could have a lower value for the 
weighted least squares criterion. For the 25 repetitions, the minimum and maximum values for 
the coverage probability were 94.7% and 97.1%, respectively. The minimum and maximum 
values for the median width were 6.42 mm and 7.70 mm, respectively. 

Depth of Pavement 

The 2,000 locations from the subbase validation data set were used to predict not only the height 
of the subbase at those locations but also the height of the pavement. Figure 44 shows the 
predicted depth (left) and the variance (right). 

 
Figure 44. Contour and image plots of predicted depth of pavement (left) and squared 

errors (right) 

Once the predictions and squared errors were calculated for the height of the subbase and the 
predictions and squared errors were calculated for the height of the pavement, the 95% 
confidence intervals were constructed as follows: 

 
)()(96.1),(),( 22

isipisip sssZpsZp σσ +±−
      (8) 

 
Where ),( ij sZp  is the prediction of height at location, is , for j = p, s 

and )(2
ij sσ is the squared error at location, is , for j = p, s. 

The median width of the 95% confidence intervals is 7.46 mm. 
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Predicted Depths at Tama and Seney, Iowa. 

The data sets for Tama and Seney, Iowa, were analyzed in a manner similar to the data at 
Hospers, Iowa. The details of this analysis are presented in the appendix. In summary, the 
median of the 95% confidence intervals are 11.27 mm for Tama and 6.957 mm for Seney. Figure 
45 and Figure 46 show the predicted depths and squared errors for each project. 

 
Figure 45. Contour plots of predicted depth (left) and squared errors (right) for Tama, 

Iowa 

 
Figure 46. Contour plots of predicted depth (left) and squared errors (right) for Seney, 

Iowa 
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Summary of Statistical Analysis 

The data analysis described above reveals significant variability in the pavement thickness. 
Table 3 lists the statistical values for the estimated pavement thickness values. These values are 
also shown graphically with boxplots in Figure 47. The height of the boxes represents the 
interquartile range (IQR), which is the difference between the 0.75 and the 0.25 percentile value. 
This means that 50% of the thickness values fall within the range represented by the box. The 
line in the box represents the median value and indicates the skewness of the data. The 
horizontal bars above and below the box represent the minimum and maximum values. The 
exception is for Seney, because the width of the lower quartile exceeds 1.5 times the width of the 
IQR. Data below the bar are considered outlier data. 

Table 3. Descriptive statistics for the projects 

 Hospers Seney Tama 
Minimum (mm) 251.5 249.7 256.0 
0.25 percentile (mm) 256.7 262.6 265.1 
Median (mm) 260.5 265.1 267.8 
0.75 percentile (mm) 264.8 266.3 274.5 
Max (mm) 276.4 269.0 281.7 
IQR (mm) 8.14 3.74 9.42 
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Figure 47. Boxplots of the estimated thickness values 

In Iowa, pavement thickness is estimated by taking the mean minus one standard deviation, 
which means that a contractor’s payment is impacted by both average thickness and variance of 
the thickness value. Table 4 shows the mean, standard deviation, estimated thickness, and design 
thickness for the three projects. Figure 48 shows the empirical frequency distributions for the 
three projects. These plots were obtained from the histograms of the thickness data for each 
project. The vertical lines mark the estimated thickness, which is equal to the mean minus one 
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standard deviation. Note that Seney had the lowest variance (SD=3.24 mm) while Tama had the 
highest (SD=5.82 mm). This variance is largely due to the subbase; the subbase material used at 
Tama was different from the material used at the other two sites. At Tama, the subbase was 
crushed portland cement concrete with very little fine material, whereas the material used at the 
other two sites consisted of a smaller aggregate with fine material, which resulted in less 
variation in the subbase surface texture. 

Table 4. Mean and standard deviation of the project data  

 Hospers Seney Tama 
Mean (mm) 261.0 264.1 269.5 
SD (mm) 5.19 3.24 5.82 
Mean - SD (mm) 255.8 260.9 263.6 
Design thickness (mm) 260 260 260 
 

 
Figure 48. Empirical frequency distribution for pavement thickness at each project 

Pavement Thickness Sampling Plan 

In Iowa, concrete thickness is estimated by taking core samples. The procedure is documented in 
Materials Instructional Memorandum 346, “Locating, Drilling, and Evaluating Portland Cement 
Concrete Pavement Cores.” (Iowa Department of Transportation 2005) The pavement is divided 
into lots, which are sections of the pavement not to exceed 2,000 sq. yd. (1,700 m2). Each lot is 
then divided into six equal segments, both longitudinally and transversely, for a total of 36 
subsections. Then, a die is rolled twice for each lot to randomly select one of the 36 subsections. 
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A core is then taken from the center of each selected subsection. The procedure for measuring 
the length of the core is specified in Materials Instructional Memorandum 347, “Measuring 
Length of Drilled Concrete Cores,” which follows AASHTO T 148.97 (AASHTO 2001). Nine 
measurements are taken from the core. These nine individual observations are recorded to the 
nearest 0.05 in. (1 mm), and the average of the nine measurements is expressed to the nearest 
0.05 in. (1 mm). This average value is recorded as the length of the core. 

The average and standard deviation are calculated for all core samples, and then a thickness 
index (TI) is calculated as follows: 

( ) TSXTI −−=
 

section for thedeviation  standardlength  core
cknessdesign thi

section for thelength  coremean 
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This thickness index is used as the basis of payment, in accordance with Section 2301 (Iowa 
DOT 2001) of the Standard Specifications for the Construction of Highways and Bridges. This 
payment schedule is shown in Table 5. 

Table 5. Payment schedule for portland cement concrete pavement 

TI range, in inches (mm) Percent 
payment TI range, in inches (mm) Percent 

payment 
0.00 or more (0.00 or more) 103 -0.56 to -0.60 (-13.98 to -15.24) 91 
-0.01 to -0.05 (-0.01 to -1.27) 102 -0.61 to -0.65 (-15.25 to -16.51) 90 
-0.06 to -0.10 (-1.28 to -2.54) 101 -0.66 to -0.70 (-16.52 to -17.78) 89 
-0.11 to -0.15 (-2.55 to -3.81) 100 -0.71 to -0.75 (-17.79 to -19.05) 88 
-0.16 to -0.20 (-3.82 to -5.08) 99 -0.76 to -0.80 (-19.06 to -20.32) 87 
-0.21 to -0.25 (-5.09 to -6.35) 98 -0.81 to -0.85 (-20.33 to -21.59) 86 
-0.26 to -0.30 (-6.36 to - 7.62) 97 -0.86 to -0.90 (-21.69 to -22.86) 85 
-0.31 to -0.35 (-7.63 to -8.89) 96 -0.91 to -0.95 (-22.87 to -24.13) 84 
-0.36 to -0.40 (-8.90 to -10.16) 95 -0.96 to -1.00 (-24.14 to -25.40) 83 
-0.41 to -0.45 (-10.17 to -11.43) 94 -1.01 to -1.05 (-25.41 to -26.67) 82 
-0.46 to -0.50 (-11.44 to -12.70) 93 -1.06 to -1.10 (-26.68 to - 27.94) 81 
-0.51 to -0.55 (-12.71 to -13.97) 92 -1.11 or less (-27.95 or less) 80 
 
As seen from the table, a change of 0.05 in. (1 mm) in the TI results in a change of 1% in the 
payment. As an example, consider a 1/2-mile (805 m) stretch of road, which represents the 
typical output of one day of paving. If the width of the road is 8.5 yd. (7.8 m), and the thickness 
is 0.28 yd. (0.26 m), then daily yield would be 2,124 cu. yd. (1,632 m3). Although a decrease in 
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TI of 0.05 in. (1 mm) would result in a yield decrease of approximately 0.5%, the payment will 
decrease by 1%. 

Figure 49 shows an estimate of the empirical frequency distribution of data recorded by laser at 
Seney, Iowa. The area data is approximately 65 sq. yd. (55 m2). The empirical frequency 
distribution was approximated by a 40-item histogram. The values of thickness within this small 
area vary from 250 mm to 269 mm, with a mean 264.14 mm. The standard deviation is 3.24 mm. 
If the intent is to pay on the following equation: 

( ) TSXTI −−=  

Then this section of road would have the following: 

( ) mm 90.026024.314.264 =−−=TI  
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Figure 49. PDF of thickness data for Seney, Iowa 

However, in this case, there are 2,000 samples in an area of 65 sq. yd. (55 m2). For the example 
of a 1/2-mile (805 m) section of pavement with a core taken every 2,000 sq. yd. (1700 m2), only 
four cores would be taken. In order to examine the likelihood that those four samples represent 
the actual value of the TI, one can examine the empirical frequency distribution of the Seney 
data at various sampling densities. Assuming that the statistical characteristics for the 1/2-mile 
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section of road are the same as those of Figure 49, the empirical frequency distributions for 
various sampling densities can be approximated using the 2,000 data points from the Seney 
project.  

In Iowa, the minimum number of cores required to calculate TI is ten. A bootstrapping method 
was used to generate the empirical frequency distribution of a ten-point sample. Ten samples 
were randomly drawn with replacement from the set of 2,000. Once the ten samples were 
chosen, the TI was calculated. This process was performed 10,000 times, and the results are 
plotted in the empirical frequency distribution in Figure 50. TI ranged in value from -7 to 6 mm. 
This would represent a payment range from 97% to 103%. Ninety-five percent of the predicted 
values for TI are between -3 mm to 4.3 mm, which represents a payment range of 100% to 
103%. There is no payment incentive for values of TI above 0. The average value of TI was 1.1 
mm, which represents a payment of 103%. These data are summarized in Table 6.  

 

-6 -4 -2 0 2 4 6
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Data

D
en

si
ty

TI

 
Figure 50. Empirical frequency distribution for a 10-point TI estimate 
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Table 6. Mean, variance, and range of TI data vs. sample size 

Points Mean Var. 
95% 
band 

Lower 
band 

Upper 
band 

Payment 
range 

Differenc
e 

10 1.0508 3.6836 7.2444 -2.9714 4.273 97-103% 6% 
50 0.9445 0.7341 3.2801 -0.7700 2.5101 101-103% 2% 
100 0.9027 0.3795 2.4133 -0.3202 2.0931 101-103% 2% 
170 0.9119 0.2167 1.8595 -0.0544 1.8051 102-103% 1% 

 
Figure 51 shows the empirical frequency distribution for a 50-point sample. When the sample 
size is increased from 10 cores to 50, the variance and range of the data decreases. At 50 
samples, the range is from -2.5 to 4 mm, which represents a payment range of 101% to 103%. 
Ninety-five percent of the data lie in the range of -0.77 to 2.5 mm (102%–103% payment). 
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Figure 51. Empirical frequency distribution for a 50-point TI estimate 

Figure 52 shows the empirical frequency distribution for a 100-point sample. Again, the variance 
and range of the data decrease. At 100 samples, the range is from -1.5 mm to 3 mm, which 
represents a payment range of 101% to 103%. Ninety-five percent of the data lie in the range of -
0.32 mm to 2.09 mm (102%–103% payment). 

Figure 53 shows the empirical frequency distribution for a 170-point sample. Again, the variance 
and range of the data decrease. At 170 samples, the range is from -1 mm to 2.6 mm, which 
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represents a payment range of 102% to 103%. Ninety-five percent of the data lie within a range 
of -0.054 mm to 1.89 mm (102%–103% payment). Figure 54 shows an overlay of the various 
empirical frequency distributions. If the goal is to estimate TI at an accuracy of +/-1 mm, then 
170 cores would be needed at Seney. The data for Tama and Hospers were similarly analyzed, 
with the results summarized in Figure 55, Figure 56, and Table 6. The project with the lowest 
standard deviation (Seney) also happens to be the project with the highest required number of 
samples. This may seem counterintuitive; however, further analysis did show that the estimates 
for mean and standard deviation are not independent. 
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Figure 52. Empirical frequency distribution for a 100-point TI estimate 
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Figure 53. Empirical frequency distribution for a 170-point TI estimate 
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Figure 54. Overlay of the empirical frequency distributions at various sampling densities 
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Figure 55. Overlay of empirical frequency distributions at various sampling densities for 

Hospers 
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Figure 56. Overlay of empirical frequency distributions at various sampling densities for 

Tama 
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Table 6. Summary of required sampling densities 

Project Number of samples 95% band 
Seney 170 1.8 
Hospers 103 1.9 
Tama 129 2.1 
 
Sampling Plan 

If the goal is to calculate TI close to the actual value (0.90 mm), then the coring method has 
serious shortcomings. Even at a sample size of 170 cores, 95% of the expected values range from 
-0.05 mm to 1.89 mm. Since there is no payment incentive for TI values above 0, there is little 
impact here on payment. At lower TI values, a 170-core sample could still produce a payment 
difference of +/- 1%. 

Summary of the Laser Scanning Method 

A thorough investigation of the use of laser scanning was conducted to assess its viability as an 
NDE technique for determining concrete pavement thickness during the paving operations. A 
stationary Leica Geosystems 3600 laser scanner was implemented in a fixed mode on the 
shoulder of the road. Laser scans were taken on three different projects and for each project 
involved one scan in front of the paving train and one behind. Filtering algorithms were created 
to process the image and leave a clean point cloud image of the subbase and concrete surface. 
This was followed by rigorous statistical analysis, which involved ordinary kriging. It was found 
that sites that used larger aggregate for the base experienced higher thickness variances. Further 
discussions with the subcommittee revealed that a more suitable subbase model would be based 
on the top surface of the aggregate as opposed to an average. Implementing this assumption will 
reduce the thickness variability. A sampling plan revealed that there are inherent shortcomings 
with the current sampling plan. Even with 170 core samples, there could still be a payment 
difference of +/- 1%. Overall, laser scanning appears to have merit; further research on the use of 
lasers should include building a prototype system complete with coordinate control for each of 
the two scanners that would be needed.  
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ALTERNATIVE NDE TESTING METHODS FOR WET CONCRETE 

The research team brought two other NDE techniques to the attention of the technical committee 
members assigned to this project. For one, ultrasound uses sound waves to penetrate through the 
wet concrete, reflect off the base, and return to the receiver. This method is based on the time it 
takes for the acoustical wave to travel to the base and back. The eddy current method uses a coil 
with changing current to detect a metal plate situated on top of the base through a change in 
impedance and reactance portion. Both of these techniques and findings are provided in the 
following two sections. 

Ultrasonic Method 

The first NDE method that was investigated was ultrasound. This method is based on the idea 
that a sound wave propagating through a medium (wet concrete in this case) will reflect off a 
dissimilar object. In theory, if the sound waves can penetrate through the pavement with 
sufficient energy, then the dissimilar material of the subbase will reflect that wave back to the 
surface of the pavement. If the speed of sound in wet concrete is known, then the time elapsed 
between transmission and detection of the sound wave can be used to calculate the thickness. 
Although there was reason to believe that ultrasound would propagate well through wet cement, 
there was concern that the addition of aggregate to the cement paste would cause significant 
scattering of the signal and introduce significant noise. However, the cost of testing the method 
was low and the potential benefits where high, so the decision was made to proceed with a proof-
of-concept test. Figure 57 shows the concept of the system. As the figure suggests, the probe 
would need to be in direct contact with the surface. This could be achieved by placing the probe 
on the metal pans behind the paver, as shown in Figure 58; having metal between the probe and 
the pavement would not absorb significant energy from the passing ultrasonic waves. 
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Figure 57. Application of ultrasound for measuring concrete thickness. 

 
Figure 58. Possible location for ultrasonic contact sensor 

Experimental Plan 

To test the concept, a simple experiment was developed. The plan was to use two ultrasonic 
probes: one to transmit the signal on one side of the sample and the other to detect the signal on 
the other side. This setup could demonstrate the viability of detecting the ultrasonic wave after it 

Concrete 

Subbase

Ultrasonic Probe



 50

passes through wet cement. If successful, another test was to be performed that measures the 
reflected wave off the aggregate subbase. If unsuccessful, there would be no reason for any 
further tests. Figure 59 shows a drawing of the experimental test rig, and Figure 60 shows a 
photo from the test. There are holes in the side of the mole so that the ultrasonic probes are in 
direct contact with the test sample. 

 
Figure 59. Experimental setup for ultrasonic test 

 
Figure 60. Ultrasonic test 

Ultrasonic 
transducers 



 51

Ultrasound Test Results 

The this experiment, a pair of 100 kHz ultrasonic probes were used to transmit and measure the 
signal through four inches of wet concrete paste (i.e., there was no large aggregate in the mix). 
Based on difficulties detecting the signal at this level, further experiments where stopped. If 
signals cannot be detected with a probe mounted on each side with cement paste, then the odds 
of detecting a reflected wave from an aggregate subbase are low. To make this method viable, a 
barrier would need to be placed between the pavement and the subbase that would better reflect 
the ultrasonic wave. If a barrier is to be placed under the subbase, then other techniques that are 
less sensitive to the aggregate may be more effective. One such method is using electromagnetics 
with a conductive barrier placed between the pavement and the subbase. Since the conductivity 
of wet concrete and aggregate are much lower than that of a metallic barrier, an electromagnetic-
based system would be insensitive to the physical properties of the concrete mix. For this reason, 
the follow-up experiment used an electromagnetic technique known as the eddy current method. 

Eddy Current Method 

Eddy current measurement is a widely used NDT method that can detect conductive materials. In 
eddy current testing, a coil of wire is powered with an alternating voltage source (Figure 61). As 
a result, the coil produces a magnetic field. The magnetic field generates eddy currents in 
conductive materials that in turn produce a magnetic field. This magnetic field affects the 
impedance of the coil of wire. Since the proximity of the conductive material to the coil, the type 
of material, and the thickness of material all impact the coil impedance, eddy current inspection 
techniques have been used to search for subsurface defects in metal. 

 
Figure 61. Eddy current testing (Euro NDT Ltd. 2006) 
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A literature review reveals that this or a similar technique is currently being used to determine 
the location and depth of joint dowel bars in concrete. This method is useful for determining 
precisely where to saw cut the concrete for crack control. The Kansas DOT funded a project that 
used a commercially available rebar detector to measure the position of dowel bars (DeVault and 
Miller 2005). However, no consideration was made for determining concrete depth. The 
electromagnetic device used in this research project was a Kolectric Covermeter (Kolectric 
2006), which costs less than $2,800. The MIT Scan-2 device (Yu and Khazanovich 2005) can 
also be used to measure the orientation and depth of a rebar in concrete roads (see Figure 62). 
Figure 63 shows a simpler device, manufactured by Zircon (Zircon 2006), which costs under 
$200. Some progress in using this technique is being made. Further research is required to use 
either the MIT Scan device or the Zircon device to determine concrete pavement thickness. 

 

 
Figure 62. MIT Scan-2 uses magnetic pulses to measure the depth of dowel bars 
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Figure 63. Zircon MT6 measures depth of metal to 6 inches +/- 1 inch 

Eddy Current Testing for Concrete Thickness 

Since concrete is a non-conductive material, an energized coil does not create eddy currents, and 
consequentially the eddy current inspection technique cannot detect concrete. However, if a 
conductive material is placed on the bottom of the concrete, an eddy current inspection technique 
can detect the plate. Additionally, the concrete is not an effective barrier to electromagnetic 
energy, which makes the concrete invisible to eddy current inspection. The result is that the eddy 
current system can measure the distance to a conductive metal plate. Whether wet concrete, dry 
concrete, or air stands between the coil and the conductive plate, the medium has very little 
effect on the measurement. These reasons make eddy current inspection an attractive technique 
for nondestructive concrete thickness measurement when a conductive plate is available for the 
bottom of the concrete pavement. As a result, a small experiment was performed to test the 
technique. 

Experimental Plan 

Figure 64 shows the conceptual setup for using an eddy current sensor for concrete paving. A 
coil is placed directly on the surface of the pavement and energized with an alternating current 
power source. Whether the concrete is wet or dry makes no difference in the measurement. The 
figure shows two separate tests. On the left is a coil on the pavement without a conductive plate 
placed under the pavement. Since the pavement and subbase have very low conductivity, an 
eddy current cannot be induced into the material, and the resulting impedance measurement of 
the coil will be similar to that of the coil impedance measured in air.  
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On the right is the same coil placed on the top of the pavement with a conductive plate placed on 
the bottom. Assuming that the coil’s field strength is strong at the depth of the conductive plate, 
an eddy current is induced into the plate and the plate then generates its own magnetic field. The 
result is a change in the real impedance of the coil, which corresponds to the amount of power 
absorbed by the plate. The amount of real power absorbed is a function of field strength and 
frequency. The field strength is held constant for the measurement, but decreases as the distance 
between the coil and plate increases. There is also a change in the imaginary impedance of the 
coil. The imaginary portion of the impedance is a measure of inductance, a phenomenon 
associated with magnetic fields. The source of the magnetic field is charge-in-motion, or current. 
If the current varies with time, the magnetic field varies with time. A time-varying magnetic field 
induces a voltage in any conductor that is linked by the field. Magnetic fields store energy, and 
this energy can be returned to the circuit. The presence of a conductive plate in the magnetic 
field changes the permeance of the space in which the magnetic field exists. The change in 
permeance also changes the strength of the magnetic field, which changes the amount of energy 
stored in the field. This change in field strength is proportional to the inductance of the coil, 
which is proportional to the imaginary component of the coil impedance. 

 
Figure 64. Eddy current sensor for concrete thickness measurement 

A test of this concept was performed by using readily available materials. Figure 65 shows the 
coil used for the test. This coil has an outer diameter of 6” and an inner diameter of 4 7/8”. As a 
rule of thumb, the depth penetration of an eddy current sensor is roughly equal to the diameter of 
the coil. In this case, the penetration is expected to be around 5”. For this reason, an upper limit 
of 4” of concrete was used for this experiment.  
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Figure 65. Test coil for eddy current test 

 
The test was performed using an 18” x 18” box with a 12” x 12” x 1/4” 6061 aluminum plate. 
Figure 66 shows the box with the aluminum plate prior to pouring the concrete. The impedance 
of the coil was measured over a range of 50 to 5,000 Hz at the following thicknesses for wet 
concrete: 0”, 1”, 2”, 3”, 3 7/8”, and 4 1/2”. An additional measurement was taken at 4 1/2” after 24 
hours of curing time. The results of the wet concrete measurements are shown in Figures 68 and 
69. Both the real and imaginary impedance show significant change with thickness: the 
sensitivity decreases as the thickness approaches 4 1/2”, which is close to the expected useful 
depth of the test coil.  

Additional measurements where taken of the coil in free air and of the 4 1/2” concrete sample 
after 24 hours of curing. These measurements are shown in Figures 70 and 71, along with the 
wet concrete thickness measurements. All of these measurements were taken at 5,000 Hz. There 
are several items to note from these figures. First, the sensitivity of the coil diminishes as the 
depth increases, with the change becoming small as the depth approaches the coil diameter. 
Second, the measurement of the 4 1/2” sample varies little between the wet and dry tests. This 
supports the hypothesis that the coil impedance is related to the conductive plate, and not the 
concrete. In fact, the real impedance increased slightly and the imaginary impedance decreased 
slightly, which could be due to shrinkage of the concrete. Third, the measurement of the 
impedance of the coil in free air is close to the measurement at 4 1/2”. There was a slight change, 
which indicates that the conductive plate was at the edge of the magnetic field. This hypothesis 
is consistent with the expectation that the usable depth of the coil is approximately equal to the 
coil diameter. 



 56

 

 
Figure 66. Test box with aluminum plate prior to pouring concrete 

 

 
Figure 67. Photo from eddy current test of wet concrete 
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Figure 68. Real impedance of coil vs. frequency and thickness 

 
Figure 69. Imaginary impedance of coil vs. frequency and thickness 
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Figure 70. Real impedance vs. thickness at 5,000 Hz 

 

 
Figure 71. Imaginary impedance vs. thickness at 5,000 Hz 
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Conclusions and Recommendations for Eddy Current Testing 

Eddy current testing is a common NDE technique that is used to examine conductive materials. 
It was expected that the method would be able to detect the 1/4” aluminum plate at the test 
depths. The experiment confirmed this hypothesis, as well as the expectation that concrete, 
whether wet or dry, is largely invisible to the coil. The method should be scalable to realistic 
pavement depths by using a coil with a diameter larger than the thickness of the concrete. To 
make this method practical to concrete paving, further work is needed. A fairly large aluminum 
plate was used for this test. Smaller and thinner plates could be used, but further testing would be 
required to find the minimum size and thickness. 

In the field, a conductive material would have to be placed under the concrete. One idea is to add 
these plates to the rebar cages that are typically placed at lateral joints prior to paving. A 
thickness measurement at each lateral joint would provide more data than currently collected 
through core samples, and measurements could be taken on the wet concrete, providing on-the-
fly thickness monitoring. Further testing will be required to determine the size and thickness of 
the plate. Also, the eddy current sensor will detect rebar cages, so the plate would need to be 
some distance from the rebar. This distance would also need to be verified through experiment. 

Some calibration would be required. Eddy current testing is largely insensitive to concrete and to 
the aggregate subbase. In the worst case, it is expected that calibration would need to be 
performed each day. This could be done by taking a manual depth measurement of a few plates. 
The accuracy of the measurement will depend on many factors, including coil diameter, coil 
impedance, power supply frequency, and the size of the conductive plate. Further testing is 
required to determine the conditions necessary to achieve the desired accuracy. 

Based on the findings of this small experiment, we believe that the eddy current sensor shows 
promise for measuring the thickness of concrete pavement. 
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RECOMMENDATIONS AND CONCLUSIONS 

It appears that there are two viable approaches for measuring concrete pavement thickness 
during the paving operation. Laser scanning has proved to be a reliable technique in terms of its 
ability to provide virtual core thickness with low variability. Research is still required to develop 
a prototype system that integrates point cloud data from two scanners; coordinate control will be 
required, which can use a total station approach or GPS for x-y control and the stringline for 
accurate elevation readings.  

Electromagnetics has also proved to be a suitable approach to measuring pavement thickness. 
This technique is probably closer to field implementation than the laser scanning approach. The 
electromagnetic approach would most likely involve the placement of metal plates (size and 
thickness to be determined) on the base in a random fashion. A row of electromagnetic sensors 
would be mounted on the back of the paver to measure concrete pavement thickness at any 
location along its width.  

Although both laser scanning and electromagnetic sensing techniques can be used to determine 
concrete pavement thickness, the subcommittee recommended that the research team pursue the 
electromagnetic technique because it is closer to implementation. Laser scanning would involve 
tight coordinate control, which is possible using current technology (e.g., robotic total stations 
and a combination of GPS and the stringline for elevation control). Electromagnetic sensors will 
be more economical and can be implemented in a handheld device or fixed behind the paver. 
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APPENDIX: STATISTICAL ANALYSIS OF THICKNESS DATA 

1. Introduction 

The first part of this project will look at the accuracy of predicting the depth of pavement based 
on two data sets: one for the height of the subbase (subbase data set) and one for the height of the 
pavement (pavement data set). Both data sets were created using a scanner, which was placed at 
the side of a four-lane divided highway. To create the pavement data set and the subbase data 
set, the scanner measured the height of the subbase before the paving operation was completed 
and then the height of the pavement after the paving operation was completed for one side of the 
four-lane divided highway. Each data set consists of thousands of observations, with each 
observation consisting of three coordinates, all recorded in meters. Ordinary kriging was then 
used to create two prediction surfaces: one for the pavement data set and one for the subbase 
data set.  
 
The depth of the pavement at a particular location was then determined by calculating the 
difference between the two prediction surfaces at that location. Pavement and subbase data sets 
were obtained at three different locations and then analyzed to the error associated with using a 
scanner to determine pavement depth in a nondestructive manner. Since the scanner cannot 
distinquish between the subbase and the dowel bars, the subbase data sets contain measurements 
of the height of dowel bars. To remove the impact of the measurements based on the dowel bars, 
two rows of dowel bars were chosen for each subbase data set. Each subbase data set was then 
reduced so that the data set consists of observations located between the two rows of dowel bars. 
Each pavement data sets was then reduced to match the boundaries of its respective subbase data 
set. Therefore, only a small area of the road was analyzed at each of the three locations. 
 
The second part of the project will examine the impact of the number of observations on the 
squared errors. The specific objective is to see whether increasing the number of observations  
reduces the size of the squared errors and, thus, decreases the size of the confidence intervals. 
 

2. Ordinary Kriging 

To predict the depth of the pavement, ordinary kriging was employed. Ordinary kriging first 
consists of calculating the empirical variogram. To calculate the empirical variogram, the 
distance between two points is calculated for all possible pairs of points. The distance between 
two points is then used to place each pair of points into a bin with other pairs that are separated 
by a similar distance. Suppose that there are n bins, such that hn represents the nth bin. Then, an 
estimate of the variability of the difference between the z-coordinate for each pair of points in a 
bin is calculated using the method-of-moments estimator, which is given in the following: 
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Where )( nhN  represents all pairs of points in the nth bin, |)(| nhN  represents the number of pairs 
of points in the nth bin, and )( ksZ  represents the z-coordinate at location sk for k = i , j. 
 
The empirical variogram is then a plot of the estimate of variability as calculated by (2.1), 
represented as )(ˆ2 nhγ  versus the midpoint of the bin range. If )(ˆ nhγ  is plotted instead of )(ˆ2 nhγ , 
the variogram is called a semi-variogram. A theorectical variogram is then fitted to the empirical 
variogram. The goal is to fit a theoretical variogram that has a shape very similar to that of the 
empirical variogram. There are several theoretical variograms, such as linear, power, and wave, 
but two theoretical variograms in particular were similar in shape to the empirical variograms for 
all the pavement and subbase data sets: the spherical and exponential variograms. The spherical 
semi-variogram is represented by the following equation: 
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Where 0c  is interpreted as the nugget, sc is the partial sill and sa is the range.  
 
Similarly, the exponential semi-variogram is as follows: 
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Where 0c  is interpreted as the nugget, ec is the partial sill and ea is the effective range.  
 
Both spherical and exponential variograms were fitted to the empirical variogram for all data 
sets. Futhermore, a weighted least squares criterion was calculated for each variogram: 
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The variogram with the lowest weighted least squares criterion was chosen. Ordinary kriging 
then uses the chosen theoretical variogram to predict the z-coordinate at a new location by taking 
a linear combination of the existing observations with weights that are based on the theoretical 
variogram. 
 
3. Hospers, Iowa, Data Set 

3.1. Pavement Data Set 

First, the pavement data set was analyzed. Because the scanner is able to take thousands of 
measurements in a small area, the pavement data set contains 5,905 observations. Since the 
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location of the centerline of the road could only be approximated, the data set was rotated so the 
center of the two-lane road (one-half of a four-lane divided highway) would run as close as 
possible along the x-axis.  
 
Figure 1 contains the contour plot of the pavement data set on the left and the perspective plot on 
the right. The x- and y-coordinates were measured in meters, while the z-coordinate was 
multiplied by 1,000 to convert the units from meters to millimeters. The reason for converting 
the z-coordinate to millimeters will be explained later. The perspective plot shows that the 
pavement increases in height from left to right in the x-direction. The plot also shows the crown 
present in the pavement, which creates an inverted V pattern in the pavement along the x-axis, 
although one side of the pavement has a greater slope than the other side. Since these trends in 
the pavement were intentionally created by the paver and prediction is the main goal of the 
analysis, trends are removed by fitting a linear model. Ordinary kriging is then performed using 
the residuals that result from the model. 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure A.1. Contour plot and perspective plot of the pavement data set 

From the trends that were observed in the perspective plot in Figure A.1, a model that 
appropriately describes the trends, which will be called Model 1, is as follows: 
 
 13210 YYXZ ββββ +++= ,         (3.1) 
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The 1Y  term was added to account for the fact that the slope on one side of the inverted V pattern 
is steeper than the slope on the other side.  
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Figure A.2 contains the contour plot and the perspective plot of the residuals that were produced 
by Model 1, while Table A.1 contains the ordinary least squares estimates for the parameters. 
Since the residuals range from -5.8 mm to 8.6 mm, changing the units of the z-coordinate into 
mm at the beginning of the analysis allows the residuals to be described in reasonable units. 

Table A.1. Parameter estimates for Model 1 
 
Parameters Estimates 

0β  -948.688 

1β  12.257 

2β  -8.606 

3β  -13.198 
 
 

 
Figure A.2. Contour plot and perspective plot of residuals (mm) from Model 1 

To examine the spatial dependence among the residuals, three empirical variograms were 
computed based on the residuals: an omnidirectional variogram, a directional variogram with an 
azimuth angle of 0 degrees and a tolerance angle of 22.5 degrees, and a directional variogram 
with an azimuth angle of 90 degrees and a tolerance angle of 22.5 degrees. Directional 
variograms were calculated because the equipment used to compact the subbase and pave the 
road moves parallel to the centerline of the road. Due to computer memory limitations, empirical 
variograms could not be calculated for the nearly 6,000 observations. Consequently, empirical 
variograms were calculated from a random sample of 2,000 residuals produced by Model 1 and 
their respective locations. Unfortunately, none of these variograms looked similar in shape to a 
theoretical variogram, such as an exponential or spherical variogram.  
 
Therefore, Model 1 was altered to account for additional trends in hopes of obtaining an 
empirical variogram that would be similar in shape to a theoretical variogram. Since one of the 
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prominent patterns that can be detected in the perspective plot in Figure A.2 is a ridge along the 
x-axis, a term can be added to the model that will allow the trend describing observations with y-
coordinates that are greater or equal to zero to have a different intercept. Consequently, the 
second model, Model 2, is as follows: 
 
 1432010 YYXYZ βββββ ++++= ,         (3.2) 
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Table A.2 contains the ordinary least squares estimates for the parameters, while Figure A.3 
contains the contour plot and the perspective plot of the residuals from Model 2. All three types 
of empirical variograms that were calculated for Model 1 were again calculated based on a 
random sample of 2,000 residuals produced by Model 2. Fortunately, the residuals from Model 2 
produced a directional variogram with an azimuth angle of 90 degrees that is similar in shape to 
the exponential or spherical variogram. All three types of variograms are shown in Figure A.4. 
Basing the theoretical variogram on the directional empirical variogram with an azimuth angle of 
90 degrees is reasonable because, as mentioned above, both the compacting and paving 
operations move parallel to the centerline of the road. 
 
Table A.2. Parameter estimates for Model 2 

Parameters Estimates 
0β  -949.273 

1β  2.038 
2β  12.259 
3β  -8.405 

4β  -14.101 
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Figure A.3. Contour plot and perspective plot of residuals (mm) from Model 2 

Estimates for the parameters for the exponential and spherical variograms were obtained using 
the variofit command in R. Only points based on a maximum distance of four meters were used 
to fit the theoretical variograms to reduce the influence of points that are based on a relatively 
small number of pairs of locations. Figure A.5 contains a plot of the empirical semi-variogram 
with the fitted exponential and spherical semi-variograms, while Table A.3 contains the 
estimates for the parameters of the exponential and spherical variograms.  

Figure A.4. Empirical semi-variogram of the residuals (left to right: omnidirectional, 0 
degrees, and 90 degrees) 
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Figure A.5. Fitted theoretical semi-variograms  

Table A.3. Estimates of parameters for theoretical variograms  

Parameters Spherical Exponential 
Tausq 0.285 0.240 
Sigmasq 2.265 3.223 
Phi 3.194 2.388 
WLS criterion 1354.87 2704.93 
 
 
According to the weighted least squares criterion and Figure A.5, the spherical variogram fits the 
empirical variogram better than the exponential variogram. Next, ordinary kriging was 
performed using the spherical variogram and another random sample of 2,000 residuals from 
Model 2. By choosing another 2,000 residuals from the remaining 3,905 residuals that were not 
chosen for the calculation of the empirical variogram, one can assess how well ordinary kriging 
can predict the height of the pavement by comparing the predicted height to the observed height 
at locations that were not used to estimate the parameters of the model. The second random 
sample consisting of 2,000 residuals and their respective locations will be called the validation 
data set. Predictions and prediction squared errors for the validation data set are shown 
graphically in the image and contour plots in Figure A.6. The squared errors are slightly larger in 
the lower left-hand corner of the contour plot than in the upper right-hand corner, which is a 
result of the pavement data being denser in the lower left-hand corner than in the upper right-
hand corner. The impact of the number of observations on the squared errors will be examined in 
more detail in a later section. 
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Figure A.6. Contour and image plots of predictions for residuals (left), predictions for 

pavement height (center), and squared errors (right) 

Confidence intervals based on a significance level of 0.05 were then calculated for each location 
in the validation data set. The predicted height of the pavement consists of the sum of the 
predicted height from Model 2 and the corresponding predicted residual from the kriging 
analysis for each location. The 95% confidence intervals were then calculated as follows: 
 
 )(96.1),( 2

iip ssZp
p

σ±          (3.3) 

 
Where ),( ip sZp  is the prediction of height at location, is ,  

and )(2
is

p
σ is the squared error at location, is . 

 
The coverage probability, which is the percentage of confidence intervals that capture the actual 
observation, is 96.6%. The median and the interquartile range of the width of the confidence 
intervals are 2.45 mm and 0.11 mm, respectively. Moreover, the theoretical prediction mean 
squared error, which is the mean of the squared errors from the kriging analysis, is 0.402. The 
empirical prediction mean squared error is 0.437 and is calculated as follows: 
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Since random samples were used for the analysis, the steps described in this section, beginning 
with generating a random sample of 2,000 observations to create the empirical variogram, were 
repeated 25 times to better understand the values that could be expected for the coverage 
probability and the median width of a confidence interval. However, only a spherical variogram 
was fitted to the empirical variogram for every random sample and used for prediction. It is 
possible that, in some cases, an exponential variogram may have been a slightly better choice. In 
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addition, since the process was repeated only 25 times, the following summary should be treated 
as a descriptive statement, not an inferential statement. For the 25 repetitions, the minimum and 
maximum values for the coverage probability are 94.8% and 97.3%, respectively, and the 
minimum and maximum values for the median width are 2.08 mm and 2.83 mm, respectively.  
 
3.2. Subbase Data Set 

The subbase data set, which contains 7,698 observations, was rotated and analyzed in the same 
manner as the pavement data set. As expected, the trends discovered in the pavement data can be 
seen in the subbase data, as shown in Figure A.7. However, the trends are less pronounced, since 
the subbase material does not create a surface that is as smooth as the pavement surface. 
 
Since Model 2 was used to model the trends in the pavement data set, Model 2 will also be used 
to model the trends in the subbase data set. The ordinary least squares estimates can be found in 
Table A.4, and the contour plot and perspective plot of the residuals from Model 2 can be found 
in Figure A.8.  
 

 
Figure A.7. Contour plot and perspective plot of the subbase data set 

Table A.4. Parameter estimates for Model 2 

Parameters Estimates 
0β  -1201.123 

1β  -7.097 
2β  12.280 
3β  -13.254 

4β  -7.390 
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Figure A.8. Contour plot and perspective plot of residuals (mm) from Model 2 

The next step was to plot the empirical variograms, as shown in Figure A.9. Again, the 
directional variogram with an azimuth angle of 90 degrees seems to be similar in shape to a 
spherical or exponential variogram, at least for distances up to four meters. Therefore, a 
maximum distance of four meters will be used when fitting the theoretical variograms. However, 
for the subbase data set, the exponential variogram is a better fit than the spherical variogram 
according to the weighted least squares criterion. The theoretical semi-variograms are shown in 
Figure A.10, while the parameter estimates for the spherical and exponential variograms are 
shown in Table A.5. 

 
 Figure A.9. Empirical semi-variogram of the residuals (left to right: omnidirectional, 0 

degrees, and 90 degrees) 
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Figure A.10. Fitted theoretical semi-variograms  

Table A.5. Estimates of parameters for theoretical variograms  
Parameters Spherical Exponential 

Tausq 2.876 2.238 
Sigmasq 16.550 23.943 

Phi 3.731 2.713 
WLS criterion 203.13 171.76 

 
Again, a random sample of 2,000 observations was selected from the remaining observations that 
were not used to calculate the empirical variogram. Next, ordinary kriging was performed using 
the exponential variogram. Once predictions were obtained, confidence intervals based on a 
significance level of 0.05 were calculated for each location in the validation data set. The 
coverage probability is 95.9%, while the median and the interquartile range of the width of the 
confidence intervals are 6.98 mm and 0.36 mm, respectively. The theoretical prediction mean 
squared error is 3.230, while the empirical prediction mean squared error is 2.870. The median 
width of the confidence intervals for the subbase is larger due to the uneven nature of the 
subbase when compared to pavement. The contour and image plot of the predictions and squared 
errors can be seen in Figure A.11. 

 
As with the pavement data, the above process was repeated 25 times, beginning with generating 
a sample of 2,000 observations to create the empirical variogram. However, only an exponential 
variogram was fitted to the empirical variogram for every random sample and used for 
prediction. It is possibile that a spherical variogram could have a lower value for the weighted 
least squares criterion. For the 25 repetitions, the minimum and maximum values for the 
coverage probability are 94.7% and 97.1%, respectively. The minimum and maximum values for 
the median width are 6.42 mm and 7.70 mm, respectively.  
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Figure A.11. Contour and image plots of predictions of residuals (left), predictions of 

subbase height (center), and squared errors (right) 

 
3.3. Depth of Pavement 

The 2,000 locations from the subbase validation data set were not only used to predict the height 
of the subbase at those locations but the height of the pavement as well.  
 
Once the predictions and squared errors were calculated for the height of the subbase and the 
predictions and squared errors were calculated for the height of the pavement, the 95% 
confidence intervals were constructed as follows: 
 
 )()(96.1),(),( 22

isipisip sssZpsZp σσ +±−       (3.5) 
 
Where ),( ij sZp  is the prediction of height at location, is , for j = p, s 

and )(2
ij sσ is the squared error at location, is , for j = p, s. 

 
The median width and interquartile range of the 95% confidence intervals are 7.46 mm and 0.45 
mm, respectively. The image and contour plots of the predictions for the depth of the pavement 
and the squared errors are shown in Figure A.12.  
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Figure A.12. Contour and image plots of predicted depth of pavement (left) and squared 

errors (right) 

4. Tama, Iowa, Data Set 

4.1. Pavement Data Set 

Again, starting with the pavement data set, Figure A.13 contains the contour plot of the 
pavement data set on the left, while the perspective plot is on the right. Tabe A.6 shows the 
Model 1 parameter estimates. The perspective plot shows that the height of the pavement is 
increasing in the y-direction and decreasing in the x-direction. Furthermore, an inverted V 
pattern is not present in this data set. Consequently, a model that accounts for a linear trend in 
both the x- and y-directions should be sufficient. This model, which will be called Model 1, is as 
follows: 
 
 YXZ 210 βββ ++= .          (4.1) 
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Figure A.13. Contour plot and perspective plot of the pavement data set 

Table A.6. Parameter estimates for Model 1 

Parameters Estimates 
0β  -930.557 

1β  -10.219 
2β  24.520 

 
 
After examining the contour and perspective plot of the residuals in Figure A.14, the strong 
trends are found in the residuals, especially parallel to the x-axis. Next, three different empirical 
variograms were calculated as described in the previous section. Although the directional 
empirical variogram with the azimuth angle of 90 degrees looked promising, the coverage 
probability for a number of samples was much less than the intended 95% coverage probability. 
Therefore, Model 1 was altered in an attempt to improve the empirical variograms. Since there is 
an inverted V pattern in the residuals, a second model, Model 2, is as follows:  
 
 13210 YYXZ ββββ +++=          (4.2) 
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Figure A.14. Contour plot and perspective plot of residuals (mm) from Model 1 

Table A.7 contains the ordinary least squares estimates for the parameters, while Figure A.15 
contains the contour plot and the perspective plot of the residuals for Model 2. The three types of 
empirical variograms that were calculated for the previous data sets were again calculated based 
on a random sample of 2,000 residuals produced by Model 2 and their respective locations. As 
with the first model, the empirical variograms were not similar in shape to typical theoretical 
variograms except for the directional variogram with an azimuth angle of 90 degrees. Spherical 
and exponential variograms were fitted to the empirical variogram, as shown in Figures A.16 and 
A.17. Table A.8 contains the estimates for the theoretical variogram parameters. For the 
pavement data, the spherical variogram is associated with a lower value for the weighted least 
squares criterion than for the exponential variogram. 

Table A.7. Parameter estimates for Model 2 

Parameters Estimates 
0β  -926.741 

1β  -10.243 
2β  26.077 
3β  -4.128 
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Figure A.15. Contour plot and perspective plot of residuals (mm) from Model 2 

 
Figure A.16. Empirical semi-variogram of the residuals (left to right: omnidirectional, 0 

degrees, and 90 degrees) 

 
Figure A.17. Fitted theoretical semi-variograms  
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Table A.8. Estimates of parameters for theoretical variograms  

Parameters Spherical Exponential 
Tausq 0.050 0.005 
Sigmasq 1.689 2.253 
Phi 3.110 2.081 
WLS criterion 322.29 857.64 
 
Next, ordinary kriging was performed based on the spherical variogram. Since there are 12,300 
observations in the pavement data set and 2,000 of those observations were used to develop the 
empirical variogram, a second random sample of 2,000 locations was generated from the 
remaining observations for the validation data set. Predictions and prediction squared errors for 
the validation data set are shown graphically in the image and contour plots in Figure A.18.  
 

 
Figure A.18. Contour and image plots of predictions for residuals (left), predictions for 

pavement height (center), and squared errors (right) 

For each location in the validation set, 95% confidence intervals for the height of the pavement 
were calculated. For these confidence intervals, the coverage probability is 93.9%. Moreover, the 
median and the interquartile range of the width of the confidence intervals are 1.34 mm and 0.20 
mm, respectively. The theoretical prediction mean squared error is 0.122 and the empirical 
prediction mean squared error is 0.139. After repeating the process 25 times, the minimum and 
maximum values for the coverage probability were 91.4% and 96.4%, respectively. The 
minimum and maximum values for the median width are 1.21 mm and 1.43 mm, respectively. 
Note that only a spherical variogram was fitted to the empirical variogram for every random 
sample and used for prediction. 

4.2. Subbase Data Set 

The subbase data set was rotated and analyzed in the same manner as the pavement data set. 
Figure A.19 shows the contour plot and perspective plot of the subbase data set. Since Model 2 
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was used to model the trends in the pavement data set, Model 2 was used to model the trends in 
the subbase data set. The ordinary least squares estimates can be found in Table A.9, and the 
contour plot and perspective plot of the residuals from Model 2 can be found in Figure A.20. 

 
Figure A.19. Contour plot and perspective plot of the subbase data set 

Table A.9. Parameter estimates for Model 2 

Parameters Estimates 
0β  -1200.386 

1β  -10.321 
2β  22.824 
3β  -1.768 
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Figure A.20. Contour plot and perspective plot of residuals (mm) from Model 2 

The next step was to plot the empirical variograms, shown in Figures A.21 and A.22. The 
directional variogram with an azimuth angle of 90 degrees still appears to be the most 
appropriate for fitting a theoretical variogram under a maximum distance of four meters. The 
parameter estimates for the spherical and exponential variograms are shown in Table A.10, 
which shows that the spherical variogram fits the empirical variogram better than the exponential 
variogram according to the weighted least squares criterion. 
 
 

 
Figure A.21. Empirical semi-variogram of the residuals (left to right: omnidirectional, 0 

degrees, and 90 degrees) 
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Figure A.22. Fitted theoretical semi-variograms  

Table A.10. Estimates of parameters for theoretical variograms  

Parameters Spherical Exponential 
Tausq 7.853 7.509 
Sigmasq 3.311 4.262 
Phi 3.179 1.642 
WLS criterion 66.54 80.41 
 
 
Again, a random sample of 2,000 observations was selected from the remaining observations that 
were not used to create the empirical variogram. Kriging was performed based on the spherical 
variogram. Once predictions were obtained, confidence intervals based on a significance level of 
0.05 were calculated for each location in the validation data set. The coverage probability for 
these intervals is 94.6%. Moreover, the median and the interquartile range of the width of the 
confidence intervals are 11.30 mm and 0.07 mm, respectively. The theoretical prediction mean 
squared error is 8.336, while the empirical prediction mean squared error is 9.061. The contour 
and image plot of the predictions and squared errors can be seen in Figure A.23. After repeating 
the process 25 times, the minimum and maximum values for the coverage probability are 92.8% 
and 95.6%, respectively. The minimum and maximum values for the median width are 9.86 mm 
and 12.85 mm, respectively. Note that only a spherical variogram was fitted to the empirical 
variogram for every random sample and used for prediction.  
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Figure A.23. Contour and image plots of predictions of residuals (left), predictions of 

subbase height (center), and squared errors (right) 

4.3. Depth of Pavement 

Ordinary kriging was then used to aid in predicting the height of the pavement and the height of 
the subbase at the locations that were selected for the subbase validation data set. Confidence 
intervals were calculated based on a significance level of 0.05. The median width and 
interquartile range of the 95% confidence intervals are 11.27 mm and 0.12 mm, respectively. 
The image and contour plots of the predictions for the depth of the pavement and the squared 
errors are shown in Figure A.24.  
 

 
Figure A.24. Contour and image plots of predicted depth of pavement (left) and squared 

errors (right) 
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5. Seney, Iowa, Data Set 

5.1. Pavement Data Set 

Starting with the pavement data set, Figure A.25 contains the contour plot of the pavement data 
set on the left, while the perspective plot is on the right. The perspective plot shows that there is 
an inverted V pattern in the pavement. The pavement also increases in the x-direction. Although 
the trends in the pavement from Seney, Iowa, look similar to the trends in the pavement from 
Hospers, Iowa, fitting a model that would produce reasonable coverage probability took more 
effort than fitting a model for the Hospers data set. The final model is as follows: 
 
 16

4
5

2
432010 YYYYXYZ βββββββ ++++++=       (5.1) 
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Figure A.25. Contour plot and perspective plot of the pavement data set 

Table A.11 contains the ordinary least squares estimates for the parameters, while Figure A.26 
contains the contour plot and the perspective plot of the residuals. All three types of empirical 
variograms were calculated based on a random sample of 2,000 residuals from the model and 
their respective locations. The empirical variogram with an azimuth angle of 90 degrees appears 
to the most appropriate for fitting a theoretical variogram. Spherical and exponential variograms 
were fitted to the empirical variogram and can be found in Figures A.27 and A.28, while the 
parameters can be found in Table A.12. According to the weighted least squares criterion, the 
spherical variogram fits the empirical variogram better than exponential variogram.  
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Table A.11. Parameter estimates for Model 1 

Parameters Estimates 
0β  -1338.390 

1β  -1.602 
2β  5.921 
3β  -12.357 

4β  -3.702 
5β  0.129 

6β  4.286 
 

 
Figure A.26. Contour plot and perspective plot of residuals (mm) from Model 1 

 
Figure A.27. Empirical semi-variogram of the residuals (left to right: omnidirectional, 0 

degrees, and 90 degrees) 
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Figure A.28. Fitted theoretical semi-variograms  

Table A.12. Estimates of parameters for theoretical variograms  

Parameters Spherical Exponential 
Tausq 0.238 0.156 
Sigmasq 0.714 0.847 
Phi 2.307 0.976 
WLS criterion 52.80 490.33 
 
Next, ordinary kriging was performed based on the spherical variogram for the validation data 
set. Predictions and prediction squared errors for the validation data set are shown graphically in 
the image and contour plots in Figure A.29.  
 

 
Figure A.29. Contour and image plots of predictions for residuals (left), predictions for 

pavement height (center), and squared errors (right) 
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For each location in the validation set, 95% confidence intervals for the height of the pavement 
were calculated. The coverage probability is 92.5%. Moreover, the median and the interquartile 
range of the width of the confidence intervals are 2.155 mm and 0.084 mm, respectively. The 
theoretical prediction mean squared error is 0.308, and the empirical prediction mean squared 
error is 0.371. After repeating the process 25 times, the minimum and maximum values for the 
coverage probability are 90.2% and 94.7%, respectively. The minimum and maximum values for 
the median width are 1.90 mm and 2.12 mm, respectively. Note that only a spherical variogram 
was fitted to the empirical variogram for every random sample and used for prediction. 
 
5.2. Subbase Data Set 

The subbase was rotated in the same manner as the pavement data set and is shown in Figure 
A.30. To model the trend in the subbase, the same model that was used for the pavement data set 
will be used, except for the two terms 2Y and 4Y , since the coverage probability for the 95% 
confidence intervals was much less than the expected coverage probability. The ordinary least 
squares estimates can be found in Table A.13 and the contour plot and perspective plot of the 
residuals from Model 2 can be found in Figure A.31. The model for the subbase is given as 
follows:  
 
 1432010 YYXYZ βββββ ++++= ,        (5.2) 
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Figure A.30. Contour plot and perspective plot of the subbase data set 
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Table A.13. Parameter estimates for Model 2 

Parameters Estimates 
0β  -1598.777 

1β  3.435 
2β  6.218 
3β  -19.866 

4β  1.335 
 
 

 
Figure A.31. Contour plot and perspective plot of residuals (mm) from Model 2 

The next step was to plot the empirical variograms, as shown in Figures A.32 and A.33. Again, 
the empirical variogram with an azimuth angle of 90 degrees appears to be the most appropriate 
for fitting an exponential or spherical variogram. The parameter estimates for the spherical and 
exponential variograms are shown in Table A.14. Again the spherical variogram fits the 
empirical variogram better than the exponential variogram. 
 
Ordinary kriging was performed using the spherical variogram for the validation data set. The 
95% confidence intervals, which were calculated for each location in the validation data set, 
produced a coverage probability of 91.9%. Moreover, the median and the interquartile range of 
the width of the confidence intervals are 6.610 mm and 0.248 mm, respectively. The theoretical 
prediction mean squared error is 2.886, while the empirical prediction mean squared error is 
3.881. After repeating the process 25 times, the minimum and maximum values for the coverage 
probability are 89.8% and 93.9%, respectively. The minimum and maximum values for the 
median width are 6.02 mm and 6.87 mm, respectively. Note that only a spherical variogram was 
fitted to the empirical variogram for every random sample and used for prediction. 
 



 89

 
Figure A.32. Empirical semi-variogram of the residuals (left to right: omnidirectional, 0 

degrees, and 90 degrees) 

 
Figure A.33. Fitted theoretical semi-variogram 

Table A.14. Estimates of parameters for theoretical variograms  

Parameters Spherical Exponential 
Tausq 2.305 1.891 
Sigmasq 6.692 8.228 
Phi 2.884 1.521 
WLS criterion 137.40 696.28 
 
 
5.3. Depth of Pavement 

Ordinary kriging was then used to aid in predicting the height of the pavement and the height of 
the subbase at the locations that were selected for the subbase validation data set. Confidence 
intervals were calculated based on a significance level of 0.05. The median width and 
interquartile range of the 95% confidence intervals were 6.957 mm and 0.267 mm, respectively. 
The image and contour plots of the predictions for the depth of the pavement and the squared 
errors are shown in Figures A.34 and A.35.  
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Figure A.34. Contour and image plots of predictions of residuals (left), predictions of 

subbase height (center), and squared errors (right) 

 
Figure A.35. Contour and image plots of predicted depth of pavement (left) and squared 

errors (right) 

6. Summary of Kriging Results 

Data were collected from three different locations in Iowa: Hospers, Tama, and Seney. For all 
the pavement and subbase data sets, a linear model was fitted to the data to account for large-
scale trends in the pavement and subbase. Subsequently, 2,000 observations were randomly 
selected to calculate an empirical variogram. Ordinary kriging was then performed using a 
spherical or exponential variogram at 2,000 locations that were randomly selected from the 
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remaining observations that were not used for the calculation of the empirical variogram. The 
choice of the spherical or exponential variogram was based on the weighted least squares 
criterion. 
 
The method of analyzing the data did not change from location to location, except for the form 
of the linear model that was used to account for large-scale trend in the pavement or subbase. In 
some cases, additional terms had to be added to account for structure that could not be seen in a 
certain perspective. Once a model had been fitted and a perspective plot had been created based 
on the residuals, only then were additional trends seen that could be explained by a linear model. 
In addition, the coverage probability in some cases was a little less than the expected 95% 
coverage probability. At this time, there is no apparent reason why the coverage probability is 
slightly less than what would be expected. The differences in coverage probability, median width 
of the confidence intervals, and prediction mean square error can be seen in Table A.15. 
 
Table A.15. Summary of kriging results 

 
 
 

 

 
7. Impact of Number of Observations on Squared Errors 

To determine how the number of observations impacts the size of the squared errors, several 
subsets of different sizes from the Hospers data set were analyzed. First, several data sets of 
different sizes were created from the pavement data set. Since the computer was only able to 
perform kriging for data sets with approximately 2,000 observations or less, all the data subsets 
contain 2,000 observations or less. Since the pavement data set based on the residuals produced 
by Model 2 has 5,905 data points, every third observation was chosen for the first data set, 
starting with the first observation; the second data set contains every fourth observation; the third 
data set contains every fifth observation, and so on. Finally, the eighth data set contains every 
tenth observation. The validation set for the first data set contained every third observation, but 
began with the second observation. For each data set, the empirical directional variogram with an 
azimuth angle of 90 degrees was fitted with a spherical variogram. The variogram was then used 
to predict the locations in the respective validation data set. For each data set, the coverage 
probability and the prediction mean squared error were calculated. The subbase data set was 
analyzed in the same manner except that the largest data set contains every fourth observation 
and the smallest data set contains every thirteenth observation. Also, the empirical directional 
variogram with an azimuth angle of 90 degrees was fitted with an exponential variogram. 
 
Figure A.36 plots the coverage probability and the prediction mean squared error versus the 
number of observations for both the pavement and subbase data sets. Notice that for data sets 
produced from either the pavement or subbase data sets that contain 500 to 1,000 points, the 

  Hospers Tama Seney 
Coverage probability 96.6% 93.9% 92.5% 
Median width (mm) 2.45  1.34 2.16 Pavement 
Prediction MSE 0.402 0.112 0.308 
Coverage probability 95.9% 94.6% 91.9% 
Median width (mm) 6.98 11.30 6.10 Subbase 
Prediction MSE 3.230 8.336 2.886 
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mean square prediction error and the coverage probability are quite variable, whereas for data 
sets that contain more than 1,000 data points, the coverage probability and prediction mean 
squared error are both relatively stable. 
 

 
Figure A.36. Coverage probability and prediction mean squared error vs. number of 

observations for Hospers pavement data set (left) and Hospers subbase data set (right) 

From the analysis presented in this section as well as the previous sections, a data set that covers 
an area similar in size to the area covered by the Hospers data set should contain at least 1,500 
points to fit a model and create an empirical variogram to fit a theoretical variogram. The data 
set should also include additional observations to serve as the validation set. Having additional 
observations to check the model fit is recommended because, during the analysis of the three 
data sets, some of the models that were used to remove the trends led to a coverage probability 
that was much less than the expected confidence level, even when the empirical variograms gave 
little indication that there would be a significant difference between the expected coverage 
probability and the actual coverage probability.  
 
 
 




